1887

Abstract

The bv. VF39 FixL protein belongs to a distinct group of hybrid regulatory sensor proteins that bear a covalently linked C-terminal receiver domain. FixL has an unorthodox histidine kinase domain, which is shared with many other hybrid regulators. The purified FixL protein had autophosphorylation activity. A truncated protein, lacking the receiver domain, had a much-reduced autophosphorylation activity. However, this truncated protein still efficiently phosphorylated the purified receiver domain . This indicates that, in the full-length FixL protein, the conserved histidine residue in the kinase domain is phosphorylated only transiently and that most of the phosphoryl label accumulates in the C-terminal receiver domain. Gene-fusion studies showed that the gene is required for free-living microaerobic induction of the promoter. The presence of a functional gene is not required. An strain lacking could not be complemented with a truncated copy of the gene lacking the receiver domain. This indicates that the C-terminal receiver domain is an intermediate in the signal transduction pathway that links oxygen limitation to induction of the promoter in bv. VF39.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27323-0
2004-11-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/11/mic1503703.html?itemId=/content/journal/micro/10.1099/mic.0.27323-0&mimeType=html&fmt=ahah

References

  1. Akimoto, S., Tanaka, A., Nakamura, K., Shiro, Y. & Nakamura, H. ( 2003; ). O2-specific regulation of the ferrous haem-based sensor kinase FixL from Sinorhizobium meliloti and its aberrant inactivation in the ferric form. Biochem Biophys Res Commun 304, 136–142.[CrossRef]
    [Google Scholar]
  2. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  3. Bauer, C. E., Elsen, S. & Bird, T. H. ( 1999; ). Mechanisms for redox control of gene expression. Annu Rev Microbiol 53, 495–523.[CrossRef]
    [Google Scholar]
  4. Beringer, J. E. ( 1974; ). R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84, 188–198.[CrossRef]
    [Google Scholar]
  5. Clark, S. R., Oresnik, I. J. & Hynes, M. F. ( 2001; ). RpoN of Rhizobium leguminosarum bv. viciae strain VF39SM plays a central role in FnrN-dependent microaerobic regulation of genes involved in nitrogen fixation. Mol Gen Genet 264, 623–633.[CrossRef]
    [Google Scholar]
  6. Colombo, M. V., Gutierrez, D., Palacios, J. M., Imperial, J. & Ruiz-Argueso, T. ( 2000; ). A novel autoregulation mechanism of fnrN expression in Rhizobium leguminosarum bv viciae. Mol Microbiol 36, 477–486.[CrossRef]
    [Google Scholar]
  7. Colonna-Romano, S., Arnold, W., Schlüter, A., Boistard, P., Pühler, A. & Priefer, U. B. ( 1990; ). An Fnr-like protein encoded in Rhizobium leguminosarum biovar viciae shows structural and functional homology to Rhizobium meliloti FixK. Mol Gen Genet 223, 138–147.[CrossRef]
    [Google Scholar]
  8. David, M., Daveran, M. L., Batut, J., Dedieu, A., Domergue, O., Ghai, J., Hertig, C., Boistard, P. & Kahn, D. ( 1988; ). Cascade regulation of nif gene expression in Rhizobium meliloti. Cell 54, 671–683.[CrossRef]
    [Google Scholar]
  9. D'hooghe, I., Michiels, J. & Vanderleyden, J. ( 1998; ). The Rhizobium etli FixL protein differs in structure from other known FixL proteins. Mol Gen Genet 257, 576–580.[CrossRef]
    [Google Scholar]
  10. Dunham, C. M., Dioum, E. M., Tuckerman, J. R., Gonzalez, G., Scott, W. G. & Gilles-Gonzalez, M. A. ( 2003; ). A distal arginine in oxygen-sensing haem-PAS domains is essential to ligand binding, signal transduction, and structure. Biochemistry 42, 7701–7708.[CrossRef]
    [Google Scholar]
  11. Fischer, H. M. ( 1994; ). Genetic regulation of nitrogen fixation in Rhizobia. Microbiol Rev 58, 352–386.
    [Google Scholar]
  12. Gilles-Gonzalez, M. A. & Gonzalez, G. ( 1993; ). Regulation of the kinase activity of haem protein FixL from the two-component system FixL/FixJ of Rhizobium meliloti. J Biol Chem 268, 16293–16297.
    [Google Scholar]
  13. Gilles-Gonzalez, M. A., Ditta, G. S. & Helinski, D. R. ( 1991; ). A haemoprotein with kinase activity encoded by the oxygen sensor of Rhizobium meliloti. Nature 350, 170–172.[CrossRef]
    [Google Scholar]
  14. Gilles-Gonzalez, M. A., Gonzalez, G., Perutz, M. F., Kiger, L., Marden, M. C. & Poyart, C. ( 1994; ). Haem-based sensors, exemplified by the kinase FixL, are a new class of haem protein with distinctive ligand binding and autoxidation. Biochemistry 33, 8067–8073.[CrossRef]
    [Google Scholar]
  15. Gilles-Gonzalez, M. A., Gonzalez, G. & Perutz, M. F. ( 1995; ). Kinase activity of oxygen sensor FixL depends on the spin state of its haem iron. Biochemistry 34, 232–236.[CrossRef]
    [Google Scholar]
  16. Gong, W., Hao, B., Mansy, S. S., Gonzalez, G., Gilles-Gonzalez, M. A. & Chan, M. K. ( 1998; ). Structure of a biological oxygen sensor: a new mechanism for haem-driven signal transduction. Proc Natl Acad Sci U S A 95, 15177–15182.[CrossRef]
    [Google Scholar]
  17. Green, J., Scott, C. & Guest, J. R. ( 2001; ). Functional versatility in the CRP-FNR superfamily of transcription factors: FNR and FLP. Adv Microb Physiol 44, 1–34.
    [Google Scholar]
  18. Hanahan, D. ( 1985; ). In DNA Cloning, Vol. 1, pp. 109–135. Edited by D. M. Glover. Oxford: IRL Press.
  19. Kim, D. & Forst, S. ( 2001; ). Genomic analysis of the histidine kinase family in bacteria and archaea. Microbiology 147, 1197–1212.
    [Google Scholar]
  20. Lois, A. F., Weinstein, M., Ditta, G. S. & Helinski, D. R. ( 1993; ). Autophosphorylation and phosphatase activities of the oxygen-sensing protein FixL of Rhizobium meliloti are coordinately regulated by oxygen. J Biol Chem 268, 4370–4375.
    [Google Scholar]
  21. Maniatis, T., Fritsch, E. F. & Sambrook, J. ( 1982; ). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  22. Monson, E. K., Weinstein, M., Ditta, G. S. & Helinski, D. R. ( 1992; ). The FixL protein of Rhizobium meliloti can be separated into a haem-binding oxygen-sensing domain and a functional C-terminal kinase domain. Proc Natl Acad Sci U S A 89, 4280–4284.[CrossRef]
    [Google Scholar]
  23. Mukai, M., Nakamura, K., Nakamura, H., Iizuka, T. & Shiro, Y. ( 2000; ). Roles of Ile209 and Ile210 on the haem pocket structure and regulation of histidine kinase activity of oxygen sensor FixL from Rhizobium meliloti. Biochemistry 39, 13810–13816.[CrossRef]
    [Google Scholar]
  24. Parkinson, J. S. & Kofoid, E. C. ( 1992; ). Communication modules in bacterial signaling proteins. Annu Rev Genet 26, 71–112.[CrossRef]
    [Google Scholar]
  25. Patschkowski, T., Schlüter, A. & Priefer, U. B. ( 1996; ). Rhizobium leguminosarum bv. viciae contains a second fnr/fixK-like gene and an unusual fixL homologue. Mol Microbiol 21, 267–280.[CrossRef]
    [Google Scholar]
  26. Perutz, M. F., Paoli, M. & Lesk, A. M. ( 1999; ). FixL, a haemoglobin that acts as an oxygen sensor: signalling mechanism and structural basis of its homology with PAS domains. Chem Biol 6, 291–297.[CrossRef]
    [Google Scholar]
  27. Preisig, O., Anthamatten, D. & Hennecke, H. ( 1993; ). Genes for a microaerobically induced oxidase complex in Bradyrhizobium japonicum are essential for a nitrogen-fixing endosymbiosis. Proc Natl Acad Sci U S A 90, 3309–3313.[CrossRef]
    [Google Scholar]
  28. Preisig, O., Zufferey, R., Thony-Meyer, L., Appleby, C. A. & Hennecke, H. ( 1996; ). A high-affinity cbb 3-type cytochrome oxidase terminates the symbiosis-specific respiratory chain of Bradyrhizobium japonicum. J Bacteriol 178, 1532–1538.
    [Google Scholar]
  29. Prell, J., Boesten, B., Poole, P. & Priefer, U. B. ( 2002; ). The Rhizobium leguminosarum bv viciae VF39 γ-aminobutyrate (GABA) aminotransferase gene (gabT) is induced by GABA and highly expressed in bacteroids. Microbiology 148, 615–623.
    [Google Scholar]
  30. Priefer, U. B. ( 1989; ). Genes involved in lipopolysaccharide production and symbiosis are clustered on the chromosome of Rhizobium leguminosarum biovar viciae VF39. J Bacteriol 171, 6161–6168.
    [Google Scholar]
  31. Reyrat, J. M., David, M., Blonski, C., Boistard, P. & Batut, J. ( 1993; ). Oxygen-regulated in vitro transcription of Rhizobium meliloti nifA and fixK genes. J Bacteriol 175, 6867–6872.
    [Google Scholar]
  32. Ried, J. L. & Collmer, A. H. ( 1987; ). An nptI-sacB-sacR cartridge for constructing directed, unmarked mutations in Gram-negative bacteria by marker exchange-eviction mutagenesis. Gene 57, 239–246.[CrossRef]
    [Google Scholar]
  33. Ronson, C. W., Nixon, B. T. & Ausubel, F. M. ( 1987; ). Conserved domains in bacterial regulatory proteins that respond to environmental stimuli. Cell 49, 579–581.[CrossRef]
    [Google Scholar]
  34. Schäfer, A., Tauch, A., Jager, W., Kalinowski, J., Thierbach, G. & Pühler, A. ( 1994; ). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145, 69–73.[CrossRef]
    [Google Scholar]
  35. Schlüter, A., Patschkowski, T., Quandt, J., Selinger, L. B., Weidner, S., Kramer, M., Zhou, L., Hynes, M. F. & Priefer, U. B. ( 1997; ). Functional and regulatory analysis of the two copies of the fixNOQP operon of Rhizobium leguminosarum strain VF39. Mol Plant–Microbe Interact 10, 605–616.[CrossRef]
    [Google Scholar]
  36. Schultz, J., Copley, R. R., Doerks, T., Ponting, C. P. & Bork, P. ( 2000; ). smart: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res 28, 231–234.[CrossRef]
    [Google Scholar]
  37. Simon, R., Priefer, U. B. & Pühler, A. ( 1983; ). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Bio/Technology 1, 784–791.[CrossRef]
    [Google Scholar]
  38. Taylor, B. L. & Zhulin, I. B. ( 1999; ). PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev 63, 479–506.
    [Google Scholar]
  39. Trzebiatowski, J. R., Ragatz, D. M. & de Bruijn, F. J. ( 2001; ). Isolation and regulation of Sinorhizobium meliloti 1021 loci induced by oxygen limitation. Appl Environ Microbiol 67, 3728–3731.[CrossRef]
    [Google Scholar]
  40. Tuckerman, J. R., Gonzalez, G. & Gilles-Gonzalez, M. A. ( 2001; ). Complexation precedes phosphorylation for two-component regulatory system FixL/FixJ of Sinorhizobium meliloti. J Mol Biol 308, 449–455.[CrossRef]
    [Google Scholar]
  41. Tuckerman, J. R., Gonzalez, G., Dioum, E. M. & Gilles-Gonzalez, M. A. ( 2003; ). Ligand and oxidation-state specific regulation of the haem-based oxygen sensor FixL from Sinorhizobium meliloti. Biochemistry 41, 6170–6177.
    [Google Scholar]
  42. Yanisch-Perron, C., Vieira, J. & Messing, J. ( 1985; ). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103–119. Erratum in Gene 114, 81–83.
    [Google Scholar]
  43. Zhulin, I. B., Taylor, B. L. & Dixon, R. ( 1997; ). PAS domain S-boxes in Archaea, Bacteria and sensors for oxygen and redox. Trends Biochem Sci 22, 331–333.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27323-0
Loading
/content/journal/micro/10.1099/mic.0.27323-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error