1887

Abstract

The two related facultatively photosynthetic bacteria and show different sensitivities against peroxide stress. is able to tolerate higher concentrations of HO and exhibits higher catalase activity than . The gene of and the gene of are strongly induced by HO. This induction depends on the presence of the OxyR protein, which is able to bind to the promoter regions of these genes. In addition to harbours the gene, which shows no significant response to HO but is induced in stationary phase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27308-0
2004-10-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/10/mic1503451.html?itemId=/content/journal/micro/10.1099/mic.0.27308-0&mimeType=html&fmt=ahah

References

  1. Aslund, F., Zheng, M., Beckwith, J. & Storz, G. ( 1999; ). Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status. Proc Natl Acad Sci U S A 96, 6161–6165.[CrossRef]
    [Google Scholar]
  2. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  3. Cortez, N., Carrillo, N., Pasternak, C., Balzer, A. & Klug, G. ( 1998; ). Molecular cloning and expression analysis of the Rhodobacter capsulatus sodB gene, encoding an iron superoxide dismutase. J Bacteriol 180, 5413–5430.
    [Google Scholar]
  4. del Carmen Vargas, M., Encarnación, S., Dávalos, A., Reyes-Pérez, A., Mora, Y. M., Garcia-de los Santos, A., Brom, S. & Mora, J. ( 2003; ). Only one catalase, katG, is detectable in Rhizobium etli, and is encoded along with the regulator OxyR on a plasmid replicon. Microbiology 149, 1165–1176.[CrossRef]
    [Google Scholar]
  5. Drews, G. ( 1983; ). Mikrobiologisches Praktikum. Heidelberg, Germany: Springer.
  6. González-Flecha, B. & Demple, B. ( 1997; ). Homeostatic regulation of intracellular hydrogen peroxide concentration in aerobically growing Escherichia coli. J Bacteriol 179, 382–388.
    [Google Scholar]
  7. Gregor, J. & Klug, G. ( 1999; ). Regulation of bacterial photosynthesis genes by oxygen and light. FEMS Microbiol Lett 179, 1–9.[CrossRef]
    [Google Scholar]
  8. Gregor, J. & Klug, G. ( 2002; ). Oxygen-regulated expression of genes for pigment binding proteins in Rhodobacter capsulatus. J Mol Microbiol Biotechnol 4, 249–253.
    [Google Scholar]
  9. Hochman, A. & Shemesh, A. ( 1987; ). Purification and characterization of a catalase-peroxidase from the photosynthetic bacterium Rhodopseudomonas capsulata. J Biol Chem 262, 6871–6876.
    [Google Scholar]
  10. Hübner, P., Willison, J. C., Vignais, P. M. & Bickle, T. A. ( 1991; ). Expression of regulatory nif genes in Rhodobacter capsulatus. J Bacteriol 173, 2993–2999.
    [Google Scholar]
  11. Keen, N. T., Tamaki, S., Kobayashi, D. & Trollinger, D. ( 1988; ). Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria. Gene 70, 191–197.[CrossRef]
    [Google Scholar]
  12. Kim, J. A. & Mayfield, J. ( 2000; ). Identification of Brucella abortus OxyR and its role in control of catalase expression. J Bacteriol 182, 5631–5633.[CrossRef]
    [Google Scholar]
  13. Kullik, I., Stevens, J., Toledano, M. B. & Storz, G. ( 1995; ). Mutational analysis of the redox-sensitive transcriptional regulator OxyR: regions important for DNA binding and multimerization. J Bacteriol 177, 1285–1291.
    [Google Scholar]
  14. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  15. Li, K., Härtig, E. & Klug, G. ( 2003a; ). Thioredoxin 2 is involved in oxidative stress defence and redox-dependent expression of photosynthesis genes in Rhodobacter capsulatus. Microbiology 149, 419–430.[CrossRef]
    [Google Scholar]
  16. Li, K., Pasternak, C. & Klug, G. ( 2003b; ). Expression of the trxA gene for thioredoxin 1 in Rhodobacter sphaeroides during oxidative stress. Arch Microbiol 180, 484–489.[CrossRef]
    [Google Scholar]
  17. Loprasert, S., Whangsuk, W., Sallabhan, R. & Mongkolsuk, S. ( 2003; ). Regulation of the katG–dpsA operon and the importance of KatG in survival of Burkholderia pseudomallei exposed to oxidative stress. FEBS Lett 542, 17–21.[CrossRef]
    [Google Scholar]
  18. Maciver, I. & Hansen, E. J. ( 1996; ). Lack of expression of the global regulator OxyR in Haemophilus influenzae has profound effect on growth phenotype. Infect Immun 64, 4618–4629.
    [Google Scholar]
  19. Nakjarung, K., Mongkolsuk, S. & Vattanaviboon, P. ( 2003; ). The oxyR from Agrobacterium tumefaciens: evaluation of its role in the regulation of catalase and peroxidase responses. Biochem Biophys Res Comm 304, 41–47.[CrossRef]
    [Google Scholar]
  20. Ochsner, U. A., Vasil, M. L., Alsabbagh, E., Parvatiyar, K. & Hassett, D. J. ( 2000; ). Role of the Pseudomonas aeruginosa oxyR-recG operon in oxidative stress defense and DNA repair: OxyR-dependent regulation of katB-ankB, ahpB, and ahpC-ahpF. J Bacteriol 182, 4533–4544.[CrossRef]
    [Google Scholar]
  21. Pasternak, C., Haberzettl, K. & Klug, G. ( 1999; ). Thioredoxin is involved in oxygen-regulated formation of the photosynthetic apparatus of Rhodobacter sphaeroides. J Bacteriol 181, 100–106.
    [Google Scholar]
  22. Perelman, A., Uzan, A., Hacohen, D. & Schwarz, R. ( 2003; ). Oxidative stress in Synechococcus sp. strain PCC 7942: various mechanisms for H2O2 detoxification with different physiological roles. J Bacteriol 185, 3654–3660.[CrossRef]
    [Google Scholar]
  23. Pfaffl, M. W. ( 2001; ). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29, e45, 2001–2007.
    [Google Scholar]
  24. Prentki, P., Binda, A. & Epstein, A. ( 1991; ). Plasmid vectors for selecting IS1-promoted deletions in cloned DNA: sequence analysis of the omega interposon. Gene 103, 17–23.[CrossRef]
    [Google Scholar]
  25. Rava, P. S., Somma, L. & Steinman, H. M. ( 1999; ). Identification of a regulator that controls stationary-phase expression of catalase-peroxidase in Caulobacter crescentus. J Bacteriol 181, 6152–6159.
    [Google Scholar]
  26. Roop, R. M., 2nd, Gee, J. M., Robertson, G. T., Richardson, J. M., Ng, W. L. & Winkler, M. E. ( 2003; ). Brucella stationary-phase gene expression and virulence. Annu Rev Microbiol 57, 57–76.[CrossRef]
    [Google Scholar]
  27. Sanger, F., Nicklen, S. & Coulson, A. R. ( 1977; ). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74, 5463–5467.[CrossRef]
    [Google Scholar]
  28. Schell, M. A. ( 1993; ). Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol 47, 597–626.[CrossRef]
    [Google Scholar]
  29. Schellhorn, H. E. ( 1994; ). Regulation of hydroperoxidase (catalase) expression in Escherichia coli. FEMS Microbiol Lett 131, 113–119.
    [Google Scholar]
  30. Sigaud, S., Becquet, V., Frendo, P., Puppo, A. & Hérouart, D. ( 1999; ). Differential regulation of two divergent Sinorhizobium meliloti genes for HPII-like catalases during free-living growth and protective role of both catalases during symbiosis. J Bacteriol 181, 2634–2639.
    [Google Scholar]
  31. Simon, R., Priefer, U. & Puhler, A. ( 1983; ). In Molecular Genetics of the Bacteria–Plant Interaction, pp. 99–106. Edited by A. Puhler. Heidelberg, Germany: Springer.
  32. Storz, G. & Altuvia, S. ( 1994; ). OxyR regulon. Methods Enzymol 234, 217–223.
    [Google Scholar]
  33. Storz, G. & Imlay, J. A. ( 1999; ). Oxidative stress. Curr Opin Microbiol 2, 188–194.[CrossRef]
    [Google Scholar]
  34. Storz, G. & Zheng, M. ( 2000; ). Oxidative stress. In Bacterial Stress Responses, pp. 47–59. Edited by G. Storz & R. Hengge-Aronis. Washington, DC: American Society for Microbiology.
  35. Terzenbach, D. P. & Blaut, M. ( 1998; ). Purification and characterization of a catalase from the nonsulfur phototrophic bacterium Rhodobacter sphaeroides ATH 2.4.1 and its role in the oxidative stress response. Arch Microbiol 169, 503–508.[CrossRef]
    [Google Scholar]
  36. Toledano, M. B., Kullik, I., Trinh, F., Baird, P. T., Schneider, T. & Storz, G. ( 1994; ). Redox-dependent shift of OxyR-DNA contacts along an extended DNA-binding site: a mechanism for differential promoter selection. Cell 78, 897–909.[CrossRef]
    [Google Scholar]
  37. Ueda, M., Kinoshita, H., Maeda, S. I., Zou, W. & Tanaka, A. ( 2003; ). Structure-function study of the amino-terminal stretch of the catalase subunit molecule in oligomerization, heme binding, and activity expression. Appl Microbiol Biotechnol 61, 488–494.[CrossRef]
    [Google Scholar]
  38. van Neil, C. B. ( 1941; ). The culture, general physiology, morphology, and classification on the non-sulfur purple and brown bacteria. Bacteriol Rev 8, 1–118.
    [Google Scholar]
  39. Visick, J. E. & Clarke, S. ( 1997; ). RpoS- and OxyR-independent induction of HPI catalase at stationary phase in Escherichia coli and identification of rpoS mutations in common laboratory strains. J Bacteriol 179, 4158–4163.
    [Google Scholar]
  40. Yen, H. C. & Marrs, B. ( 1976; ). Map of genes of carotenoid and bacteriochlorophyll biosynthesis in Rhodopseudomonas capsulata. J Bacteriol 126, 619–629.
    [Google Scholar]
  41. Zeilstra-Ryalls, J. H. & Kaplan, S. ( 2004; ). Oxygen intervention in the regulation of gene expression: the photosynthetic bacterial paradigm. Cell Mol Life Sci 61, 417–436.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27308-0
Loading
/content/journal/micro/10.1099/mic.0.27308-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error