1887

Abstract

Three structural chitin synthase genes, , and , were identified in the genome of f. sp. , a soilborne pathogen causing vascular wilt disease in tomato plants. Based on amino acid identities with related fungal species, , and encode structural chitin synthases (CSs) of class I, class II and class III, respectively. A gene () encoding a chaperone-like protein was identified by comparison of the deduced protein with Chs7p from , an endoplasmic reticulum (ER) protein required for the export of ScChs3p (class IV) from the ER. So far no CS gene belonging to class IV has been isolated from , although it probably contains more than one gene of this class, based on the genome data of the closely related species . -, - and -deficient mutants were constructed through targeted gene disruption by homologous recombination. No compensatory mechanism seems to exist between the CS genes studied, since chitin content determination and expression analysis of the genes showed no differences between the disruption mutants and the wild-type strain. By fluorescence microscopy using Calcofluor white and DAPI staining, the wild-type strain and Δ and Δ mutants showed similar septation and even nuclear distribution, with each hyphal compartment containing only one nucleus, whereas the Δ mutant showed compartments containing up to four nuclei. Pathogenicity assays on tomato plants indicated reduced virulence of Δ and Δ null mutants. Stress conditions affected normal development in Δ but not in Δ or Δ disruptants, and the three -deficient mutants showed increased hyphal hydrophobicity compared to the wild-type strain when grown in sorbitol-containing medium. The chitin synthase mutants will be useful for elucidating cell wall biogenesis in and the relationship between fungal cell wall integrity and pathogenicity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27236-0
2004-10-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/10/mic1503175.html?itemId=/content/journal/micro/10.1099/mic.0.27236-0&mimeType=html&fmt=ahah

References

  1. Aljanabi, S. M. & Martínez, I. ( 1997; ). Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 15, 4692–4693.
    [Google Scholar]
  2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  3. Andrianopoulus, A. & Timberlake, W. E. ( 1994; ). The Aspergillus nidulans abaA gene encodes a transcriptional activator that acts as a genetic switch to control development. Mol Cell Biol 14, 2503–2515.[CrossRef]
    [Google Scholar]
  4. Aufauvre-Brown, A., Mellado, E., Gow, N. A. & Holden, D. W. ( 1997; ). Aspergillus fumigatus chsE: a gene related to CHS3 of Saccharomyces cerevisiae and important for hyphal growth and conidiophore development but not pathogenicity. Fungal Genet Biol 21, 141–152.[CrossRef]
    [Google Scholar]
  5. Bartnicki-García, S., Ruiz-Herrera, J. & Bracker, J. ( 1984; ). Chitosomes and chitin synthesis. In Fungal Walls and Hyphal Growth, pp. 149–168. Edited by J. H. Burnett & A. P. J. Trinci. Cambridge, UK: Cambridge University Press.
  6. Beckman, C. H. ( 1987; ). The Nature of Wilt Diseases of Plants. St Paul, MN: American Phytopathological Society.
  7. Borgia, P. T., Iartchouk, N., Riggle, P. J., Winter, K. R., Koltin, Y. & Bulawa, C. E. ( 1996; ). The chsB gene of Aspergillus nidulans is necessary for normal hyphal growth and development. Fungal Genet Biol 20, 193–203 (erratum in Fungal Genet Biol 20, 314).
    [Google Scholar]
  8. Bowen, A. R., Chen-Wu, J. L., Momany, M., Young, R., Szaniszlo, P. J. & Robbins, P. W. ( 1992; ). Classification of fungal chitin synthases. Proc Natl Acad Sci U S A 89, 519–523.[CrossRef]
    [Google Scholar]
  9. Bulawa, C. E. ( 1993; ). Genetics and molecular biology of chitin synthesis in fungi. Annu Rev Microbiol 47, 505–534.[CrossRef]
    [Google Scholar]
  10. Bull, A. T. ( 1970; ). Chemical composition of wild-type and mutant Aspergillus nidulans cell walls. The nature of polysaccharide and melanin constituents. J Gen Microbiol 63, 75–94.[CrossRef]
    [Google Scholar]
  11. Cabib, E., Shaw, J. A., Mol, P. C., Bowers, B. & Choi, W. J. ( 1996; ). Chitin biosynthesis and morphogenetic processes. In The Mycota. Biochemistry and Molecular Biology, vol. III, pp. 243–267. Edited by R. Brambl & G. A. Marzluf. Berlin, Germany: Springer.
  12. Chiu, Y. H., Xiang, X., Dawe, A. L. & Morris, N. R. ( 1997; ). Deletion of nudC, a nuclear migration gene of Aspergillus nidulans, causes morphological and cell wall abnormalities and is lethal. Mol Biol Cell 8, 1735–1749.[CrossRef]
    [Google Scholar]
  13. Chomzczynski, P. & Sacchi, N. ( 1987; ). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162, 156–159.
    [Google Scholar]
  14. Cohen, E. ( 1990; ). Extracellular biopolymers as targets for pest control. In Pesticides and Alternatives. Innovative Chemical and Biological Approaches to Pest Control, pp. 23–32. Edited by J. E. Casida. Amsterdam: Elsevier.
  15. Cos, T., Ford, R. A., Trilla, J. A., Durán, A., Cabib, E. & Roncero, C. ( 1998; ). Molecular analysis of Chs3p, participation in chitin synthase III activity. Eur J Biochem 256, 419–426.[CrossRef]
    [Google Scholar]
  16. Din, A. B. & Yarden, O. ( 1994; ). The Neurospora crassa chs-2 gene encodes a nonessential chitin synthase. Microbiology 140, 2189–2197.[CrossRef]
    [Google Scholar]
  17. Din, A. B., Specht, C. A., Robbins, P. W. & Yarden, O. ( 1996; ). chs-4, a class IV chitin synthase gene from Neurospora crassa. Mol Gen Genet 250, 214–222.
    [Google Scholar]
  18. Di Pietro, A. & Roncero, M. I. G. ( 1998; ). Cloning, expression and role in pathogenicity of pg1 encoding the major extracellular endopolygalacturonase of the vascular wilt pathogen Fusarium oxysporum. Mol Plant–Microbe Interact 11, 91–98.[CrossRef]
    [Google Scholar]
  19. Estruch, F. ( 2000; ). Stress-controlled transcription factors, stress-induced genes and stress-tolerance in budding yeast. FEMS Microbiol Rev 24, 469–486.[CrossRef]
    [Google Scholar]
  20. Fujiwara, M., Horiuchi, H., Ohta, A. & Takagi, M. ( 1997; ). A novel fungal gene encoding chitin synthase with a myosin motor-like domain. Biochem Biophys Res Commun 236, 75–78.[CrossRef]
    [Google Scholar]
  21. Fujiwara, M., Ichinomiya, M., Motoyama, T., Horiuchi, H., Ohta, A. & Takagi, M. ( 2000; ). Evidence that the Aspergillus nidulans class I and class II chitin synthase genes, chsC and chsA, share critical roles in hyphal wall integrity and conidiophore development. J Biochem 127, 359–366.[CrossRef]
    [Google Scholar]
  22. Galagan, J. E., Calvo, S. E., Borkovich, K. A. & 74 other authors ( 2003; ). The genome sequence of the filamentous fungus Neurospora crassa. Nature 422, 859–868.[CrossRef]
    [Google Scholar]
  23. Garcerá-Teruel, A., Xoconostle-Cázares, B., Rosas-Qui jano, R., Ortiz, L., León-Ramírez, C., Specht, C. A., Sentandreu, R. & Ruiz-Herrera, J. ( 2004; ). Loss of virulence in Ustilago maydis by Umchs6 gene disruption. Res Microbiol 155, 87–97.[CrossRef]
    [Google Scholar]
  24. García-Maceira, F. I., Di Pietro, A. & Roncero, M. I. G. ( 2000; ). Cloning and disruption of pgx4 encoding an in planta expressed exopolygalacturonase from Fusarium oxysporum. Mol Plant–Microbe Interact 13, 359–365.[CrossRef]
    [Google Scholar]
  25. Harris, S. D., Morrell, J. L. & Hamer, J. E. ( 1994; ). Identification and characterization of Aspergillus nidulans mutants defective in cytokinesis. Genetics 136, 517–532.
    [Google Scholar]
  26. Horiuchi, H., Fujiwara, M., Yamashita, S., Ohta, A. & Takagi, M. ( 1999; ). Proliferation of intrahyphal hyphae caused by disruption of csmA, which encodes a class V chitin synthase with a myosin motor-like domain in Aspergillus nidulans. J Bacteriol 181, 3721–3729.
    [Google Scholar]
  27. Horton, R. M., Hunt, H. D., Ho, S. N., Pullen, J. K. & Pease, L. R. ( 1989; ). Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77, 61–68.[CrossRef]
    [Google Scholar]
  28. Lee, J. I., Choi, J. H., Park, B. C., Park, Y. H., Lee, M. Y., Park, H.-M. & Maeng, P. J. ( 2004; ). Differential expression of the chitin synthase genes of Aspergillus nidulans, chsA, chsB and chsC, in response to developmental status and environmental factors. Fungal Genet Biol 41, 635–646.[CrossRef]
    [Google Scholar]
  29. Litzka, O., Papagiannopolous, P., Davis, M. A., Hynes, M. J. & Brakhage, A. A. ( 1998; ). The penicillin regulator PENR1 of Aspergillus nidulans is a HAP-like transcriptional complex. Eur J Biochem 251, 758–767.[CrossRef]
    [Google Scholar]
  30. Madrid, M. P., Di Pietro, A. & Roncero, M. I. G. ( 2003; ). Class V chitin synthase determines pathogenicity in the vascular wilt fungus Fusarium oxysporum f.sp. lycopersici and mediates resistance to plant defense compounds. Mol Microbiol 47, 256–266.
    [Google Scholar]
  31. Mellado, E., Aufauvre-Brown, A., Specht, C. A., Robbins, P. W. & Holden, D. W. ( 1995; ). A multigene family related to chitin synthase genes of yeast in the opportunistic pathogen Aspergillus fumigatus. Mol Gen Genet 246, 353–359.[CrossRef]
    [Google Scholar]
  32. Mellado, E., Aufauvre-Brown, A., Gow, N. A. & Holden, D. W. ( 1996a; ). The Aspergillus fumigatus chsC and chsG encode class III chitin synthases with different functions. Mol Microbiol 20, 667–679.[CrossRef]
    [Google Scholar]
  33. Mellado, E., Specht, C. A., Robbins, P. W. & Holden, D. W. ( 1996b; ). Cloning and characterisation of chsD, a chitin synthase-like gene of Aspergillus fumigatus. FEMS Microbiol Lett 143, 69–76.[CrossRef]
    [Google Scholar]
  34. Mellado, E., Dubreucq, G., Mol, P., Sarfati, J., Paris, S., Diaquin, M., Holden, D. W., Rodríguez-Tudela, J. L. & Latgé, J. P. ( 2003; ). Cell wall biogenesis in a double chitin synthase mutant (chsG /chsE ) of Aspergillus fumigatus. Fungal Genet Biol 38, 98–109.[CrossRef]
    [Google Scholar]
  35. Motoyama, T., Fujiwara, M., Kojima, N., Horiuchi, H., Ohta, A. & Takagi, M. ( 1996; ). The Aspergillus nidulans genes chsA and chsD encode chitin synthases which have redundant functions in conidia formation. Mol Gen Genet 253, 520–528.
    [Google Scholar]
  36. Munro, C. A. & Gow, N. A. R. ( 2001; ). Chitin synthesis in human pathogenic fungi. Med Mycol 39, 41–43.[CrossRef]
    [Google Scholar]
  37. Odds, F. C., Brown, A. J. P. & Gow, N. A. R. ( 2003; ). Antifungal agents: mechanisms of action. Trends Microbiol 11, 272–279.[CrossRef]
    [Google Scholar]
  38. Paris, S., Debeaupuis, J. P., Crameri, R., Carey, M., Charles, F., Prevost, M. C., Schmitt, C., Philippe, B. & Latgé, J. P. ( 2003; ). Conidial hydrophobins of Aspergillus fumigatus. Appl Environ Microbiol 69, 1581–1588.[CrossRef]
    [Google Scholar]
  39. Park, B.-C., Park, Y.-H. & Park, H.-M. ( 2003; ). Activation of chsC transcription by AbaA during asexual development of Aspergillus nidulans. FEMS Microbiol 220, 241–246.[CrossRef]
    [Google Scholar]
  40. Reissig, J. L., Stringer, J. L. & Leloir, L. F. ( 1955; ). A modified colorimetric method for the estimation of N-acetylaminosugars. J Biol Chem 217, 959–966.
    [Google Scholar]
  41. Roldán-Arjona, T., Pérez-Espinosa, A. & Ruiz-Rubio, M. ( 1999; ). Tomatinase from Fusarium oxysporum f.sp. lycopersici defines a new class of saponinases. Mol Plant–Microbe Interact 12, 852–861.[CrossRef]
    [Google Scholar]
  42. Roncero, C. ( 2002; ). The genetic complexity of chitin synthesis in fungi. Curr Genet 41, 367–378.[CrossRef]
    [Google Scholar]
  43. Ruiz-Herrera, J. & Martínez-Espinoza, A. D. ( 1999; ). Chitin biosynthesis and structural organization in vivo. In Chitin and Chitinases, pp. 39–53. Edited by P. Jolles & R. A. A. Muzzarelli. Basel, Switzerland: Birkhäuser Verlag.
  44. Ruiz-Herrera, J., Sentandreu, R. & Martínez, J. P. ( 1992; ). Chitin biosynthesis in fungi. In Handbook of Applied Mycology, vol. 4, Fungal Biotechnology, pp. 281–312. Edited by D. K. Arora, R. P. Elander & K. G. Mukerji. New York: Marcel Dekker.
  45. Ruiz-Herrera, J., González-Prieto, J. M. & Ruiz-Medrano, R. ( 2002; ). Evolution and phylogenetic relationships of chitin synthases from yeasts and fungi. FEMS Yeast Res 4, 247–256.
    [Google Scholar]
  46. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  47. Santos, B., Durán, A. & Valdivieso, M. H. ( 1997; ). CHS5 a gene involved in chitin synthesis and mating in Saccharomyces cerevisiae. Mol Cell Biol 17, 2485–2496.
    [Google Scholar]
  48. Schoffelmeer, E. A. M., Klis, F. M., Sietsma, J. H. & Cornelissen, B. J. C. ( 1999; ). The cell wall of Fusarium oxysporum. Fungal Genet Biol 27, 275–282.[CrossRef]
    [Google Scholar]
  49. Soulie, M. C., Piffeteau, A., Choquer, M., Boccara, M. & Vidal-Cros, A. ( 2003; ). Disruption of Botrytis cinerea class I chitin synthase gene Bcchs1 results in cell wall weakening and reduced virulence. Fungal Genet Biol 40, 38–46.[CrossRef]
    [Google Scholar]
  50. Specht, C. A., Liu, Y., Robbins, P. W. & 8 other authors ( 1996; ). The chsD and chsE genes of Aspergillus nidulans and their roles in chitin synthesis. Fungal Genet Biol 20, 153–167.[CrossRef]
    [Google Scholar]
  51. Trilla, J. A., Cos, T., Duran, A. & Roncero, C. ( 1997; ). Characterization of CHS4 (CAL2), a gene of Saccharomyces cerevisiae involved in chitin biosynthesis and allelic to SKT5 and CSD4. Yeast 9, 795–807.
    [Google Scholar]
  52. Trilla, J. A., Durán, A. & Roncero, C. ( 1999; ). Chs7p, a new protein involved in the control of protein export from the endoplasmic reticulum that is specifically engaged in the regulation of chitin synthesis in Saccharomyces cerevisiae. J Cell Biol 145, 1153–1163. (erratum in J Cell Biol 1999, 146, following 264).
    [Google Scholar]
  53. Turgeon, B. G., Garber, R. C. & Yoder, O. C. ( 1987; ). Developmemt of a fungal transformation system based on selection of sequences with promoter activity. Mol Cell Biol 7, 3297–3305.
    [Google Scholar]
  54. Vartivarian, S. E., Anaissie, E. J. & Bodey, G. P. ( 1993; ). Emerging fungal pathogens in immunocompromised patients: classification, diagnosis, and management. Clin Infect Dis 17, 487–491.[CrossRef]
    [Google Scholar]
  55. Vidal-Cros, A. & Boccara, M. ( 1998; ). Identification of four chitin synthase genes in the rice blast disease agent Magnaporthe grisea. FEMS Microbiol Lett 165, 103–109.[CrossRef]
    [Google Scholar]
  56. Wang, Q., Liu, H. & Szaniszlo, P. J. ( 2002; ). Compensatory expression of five chitin synthase genes, a response to stress stimuli, in Wangiella (Exophiala) dermatitidis, a melanized fungal pathogen of humans. Microbiology 148, 2811–2817.
    [Google Scholar]
  57. Wessels, J. G. ( 1997; ). Hydrophobins: proteins that change the nature of the fungal surface. Adv Microb Physiol 38, 1–45.
    [Google Scholar]
  58. Xoconostle-Cazares, B., Specht, C. A., Robbins, P. W., Liu, Y., León, C. & Ruiz-Herrera, J. ( 1997; ). Umchs5, a gene coding for a class IV chitin synthase in Ustilago maydis. Fungal Genet Biol 22, 199–208.[CrossRef]
    [Google Scholar]
  59. Yarden, O. & Yanofsky, C. ( 1991; ). Chitin synthase 1 plays a major role in cell wall biogenesis in Neurospora crassa. Genes Dev 5, 2420–2430.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27236-0
Loading
/content/journal/micro/10.1099/mic.0.27236-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error