1887

Abstract

Space flight has been shown to affect various bacterial growth parameters. It is proposed that weightlessness allows the cells to remain evenly distributed, consequently altering the chemical makeup of their surrounding fluid, and hence indirectly affecting their physiological behaviour. In support of this argument, ground-based studies using clinostats to partially simulate the quiescent environment attained in microgravity have generally been successful in producing bacterial growth characteristics that mimic responses reported under actual space conditions. A novel approach for evaluating the effects of reduced cell sedimentation is presented here through use of cultures genetically modified to be neutrally buoyant. Since clinorotation would not (or would only minimally) affect cell distribution of this already near-colloidal cell system, it was hypothesized that the effects on final population density would be eliminated relative to a static control. Gas-vesicle-producing cultures were grown under clinostat and static conditions and the culture densities at 60 h were compared. As a control, that do not produce gas vesicles, but were otherwise identical to the experimental strain, were also grown under clinostat and static conditions. As hypothesized, no significant difference was observed in cell populations at 60 h between the clinorotated and static gas-vesicle-producing cultures, while the cells that did not produce gas vesicles showed a mean increase in population density of 10·5 % (=0·001). These results further suggest that the lack of cumulative cell sedimentation is the dominant effect of space flight on non-stirred, cultures.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27062-0
2005-01-01
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/1/mic1510069.html?itemId=/content/journal/micro/10.1099/mic.0.27062-0&mimeType=html&fmt=ahah

References

  1. Albrecht-Buehler G. 1991; Possible mechanisms of indirect gravity sensing by cells. Gravit Space Biol Bull 4:25–34
    [Google Scholar]
  2. Baker P. W., Leff L. 2004; The effect of simulated microgravity on bacteria from the Mir space station. Microgravity Sci Technol XV:35–41
    [Google Scholar]
  3. Bouloc P., D'Ari R. 1991; Escherichia coli metabolism in space. J Gen Microbiol 137:2839–2843 [CrossRef]
    [Google Scholar]
  4. Brown R. B. 1999; Effects of space flight, clinorotation, and centrifugation on the growth and metabolism of Escherichia coli . PhD thesis University of Colorado; Boulder:
  5. Brown R. B., Klaus D., Todd P. 2002; Effects of space flight, clinorotation, and centrifugation on the substrate utilization efficiency of E. coli . Microgravity Sci Technol XIII:24–29
    [Google Scholar]
  6. Ciferri O., Tiboni O., Di Pasquale G., Orlandoni A. M., Marchesi M. L. 1986; Effects of microgravity on genetic-recombination in Escherichia coli . Naturwissenschaften 73:418–421 [CrossRef]
    [Google Scholar]
  7. England L. S., Gorzelak M., Trevors J. T. 2003; Growth and membrane polarization in Pseudomonas aeruginosa UG2 grown in randomized microgravity in a high aspect ratio vessel. Biochim Biophys Acta 162476–80 [CrossRef]
    [Google Scholar]
  8. Fang A., Pierson D. L., Mishra S. K., Koenig D. W., Demain A. L. 1997a; Gramicidin S production by Bacillus brevis in simulated microgravity. Curr Microbiol 34:119–204
    [Google Scholar]
  9. Fang A., Pierson D. L., Mishra S. K., Koenig D. W., Demain A. L. 1997b; Effect of simulated microgravity and shear stress on microcin B17 production by Escherichia coli and its excretion into the medium. Appl Environ Microbiol 63:4090–4092
    [Google Scholar]
  10. Fang A., Pierson D. L., Mishra S. K., Demain A. L. 2000; Growth of Streptomyces hygroscopicus in rotating-wall bioreactor under simulated microgravity inhibits rapamycin production. Appl Microbiol Biotechnol 54:33–36 [CrossRef]
    [Google Scholar]
  11. Frude M. J., Read A., Kennedy L. D. 1994; Scale-up production of a recombinant Mycobacterium leprae antigen. Ann N Y Acad Sci 721:100–104 [CrossRef]
    [Google Scholar]
  12. Gasset G., Tixador R., Eche B., Lapchine L., Moatti N., Toorop P., Woldringh C. 1994; Growth and division of Escherichia coli under microgravity conditions. Res Microbiol 145:111–120 [CrossRef]
    [Google Scholar]
  13. Huitema C., Beaudette L. A., Trevors J. T. 2002; Simulated microgravity (SMG) and bacteria. Rivista Di Biologia 95:497–503
    [Google Scholar]
  14. Kacena M., Todd P. 1997; Growth characteristics of E. coli and B. subtilis cultured on an agar substrate in microgravity. Microgravity Sci Technol X:58–62
    [Google Scholar]
  15. Kacena M. A., Leonard P. E., Todd P., Luttges M. W. 1997; Low gravity and inertial effects on the growth of E. coli and B. subtilis in semi-solid media. Aviat Space Environ Med 68:1104–1108
    [Google Scholar]
  16. Kacena M. A., Manfredi B., Todd P. 1999a; Effects of space flight and mixing on bacterial growth in low volume cultures. Microgravity Sci Technol XII:74–77
    [Google Scholar]
  17. Kacena M. A., Merrell G. A., Manfredi B., Smith E. E., Klaus D. M., Todd P. 1999b; Bacterial growth in space flight: logistic growth curve parameters for Escherichia coli and Bacillus subtilis . Appl Microbiol Biotechnol 51:229–234 [CrossRef]
    [Google Scholar]
  18. Klaus D. 1998; Microgravity and its implications for fermentation biotechnology. Trends Biotechnol 16:369–373 [CrossRef]
    [Google Scholar]
  19. Klaus D. M. 2001; Clinostats and bioreactors. Gravit Space Biol Bull 14:55–64
    [Google Scholar]
  20. Klaus D. M. 2002; Space microbiology: microgravity and microorganisms. In Encyclopedia of Environmental Microbiology pp 2996–3004 Edited by Britton G. New York: Wiley;
    [Google Scholar]
  21. Klaus D. M., Lutteges M. W., Stodieck L. S. 1994; Investigation of space flight effects on Escherichia coli growth. In SAE Technical Paper Series 941260 pp 1–9 Warrendale, PA: SAE Publications;
    [Google Scholar]
  22. Klaus D., Simske S., Todd P., Stodieck L. 1997; Investigation of space flight effects on Escherichia coli and a proposed model of underlying physical mechanisms. Microbiology 143:449–455 [CrossRef]
    [Google Scholar]
  23. Klaus D., Todd P., Schatz A. 1998; Functional weightlessness during clinorotation of cell suspensions. Adv Space Res 21:1315–1318 [CrossRef]
    [Google Scholar]
  24. Lam K. S., Mamber S. W., Pack E., Forenza S., Fernandes P., Klaus D. 1998; The effects of space flight on the production of monorden by Humicola fuscoatra WC5157 in solid state fermentation. Appl Microbiol Biotechnol 49:579–583 [CrossRef]
    [Google Scholar]
  25. Lam K. S., Gustavson D. R., Pirnik D., Pack E., Bulanhagui C., Mamber S. W., Forenza S., Stodieck L. S., Klaus D. M. 2002; The effect of space flight on the production of actinomycin D by Streptomyces plicatus . J Ind Microbiol Biotechnol 29:299–302 [CrossRef]
    [Google Scholar]
  26. Li N., Cannon M. C. 1998; Gas vesicle genes identified in Bacillus megaterium and functional expression in Escherichia coli . J Bacteriol 180:2450–2458
    [Google Scholar]
  27. Mattoni R. H. T. 1968; Space-flight effects and gamma radiation interaction on growth and induction of lysogenic bacteria. BioScience 18:602–608 [CrossRef]
    [Google Scholar]
  28. McPherson A. 1993; Effects of a microgravity environment on the crystallization of biological macromolecules. Microgravity Sci Technol VI:101–109
    [Google Scholar]
  29. Mennigmann H. D., Heise M. 1994; Response of growing bacteria to reduction in gravity. In Fifth European Symposium on Life Science Research in Space SP-366 pp 83–87 Paris: European Space Agency;
    [Google Scholar]
  30. Mennigmann H. D., Lange M. 1986; Growth and differentiation of Bacillus subtilis under microgravity. Naturwissenschaften 73:415–417 [CrossRef]
    [Google Scholar]
  31. Moatti N., Lapchine L., Gasset G., Richoilley G., Templier J., Tixador R. 1986; Preliminary results of the antibio experiment. Naturwissenschaften 73:413–414 [CrossRef]
    [Google Scholar]
  32. Nickerson C. A., Ott C. M., Wilson J. W., Ramamurthy R., LeBlanc C. L., Hammond T., Pierson D. L, Honer zu Bentrup K. 2003; Low-shear modeled microgravity: a global environmental regulatory signal affecting bacterial gene expression, physiology, and pathogenesis. J Microbiol Methods 54:1–11 [CrossRef]
    [Google Scholar]
  33. Robbins J. W., Taylor K. B. 1989; Optimization of Escherichia coli growth by controlled addition of glucose. Biotechnol Bioeng 34:1289–1294 [CrossRef]
    [Google Scholar]
  34. Thévenet D., D'Ari R., Bouloc P. 1996; The SIGNAL experiment in BIORACK: Escherichia coli in microgravity. J Biotechnol 47:89–97 [CrossRef]
    [Google Scholar]
  35. Tixador R., Richoilley G., Gasset G., Templier J., Bes J. C., Moatti N., Lapchine I. 1985; Study of minimal inhibitory concentration of antibiotics on bacteria cultivated in vitro in space (Cytos 2 Experiment). Aviat Space Environ Med 56:748–751
    [Google Scholar]
  36. Todd P., Klaus D. M. 1996; Theories and models on the biology of cells in space. Adv Space Res 17:3–10 [CrossRef]
    [Google Scholar]
  37. Vogel H. J., Bonner D. M. 1956; Acetylornithinase of Escherichia coli : partial purification and some properties. J Biol Chem 218:97–106
    [Google Scholar]
  38. Wilson J. W., Ott C. M., Ramamurthy R., Porwollik S., McClelland M., Pierson D. L., Nickerson C. A. 2002; Low-shear modeled microgravity alters the Salmonella enterica serovar Typhimurium stress response in an RpoS-independent manner. Appl Environ Microbiol 68:5408–5416 [CrossRef]
    [Google Scholar]
  39. Yee L., Blanch H. W. 1992; Recombinant protein expression in high cell-density fed-batch cultures of Escherichia coli . Biotechnology 10:1550–1556 [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.27062-0
Loading
/content/journal/micro/10.1099/mic.0.27062-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error