1887

Abstract

The regulation of the expression of the operon, proposed to encode an electron transfer chain from the outer to the inner membrane in the obligate acidophilic chemolithoautroph , has been studied at the RNA and protein levels. As observed by Northern hybridization, real-time PCR and reverse transcription analyses, this operon was more highly expressed in ferrous iron- than in sulfur-grown cells. Furthermore, it was shown by immunodetection that components of this respiratory chain are synthesized in ferrous iron- rather than in sulfur-growth conditions. Nonetheless, weak transcription and translation products of the operon were detected in sulfur-grown cells at the early exponential phase. The results strongly support the notion that -operon expression is induced by ferrous iron, in agreement with the involvement of the -operon-encoded products in the oxidation of ferrous iron, and that ferrous iron is used in preference to sulfur.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26966-0
2004-07-01
2020-09-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/7/mic1502113.html?itemId=/content/journal/micro/10.1099/mic.0.26966-0&mimeType=html&fmt=ahah

References

  1. Amaro A. M., Chamorro D., Seeger M., Arredondo R., Peirano I., Jerez C. A.. 1991; Effect of external pH perturbations on in vivo protein synthesis by the acidophilic bacterium Thiobacillus ferrooxidans. J Bacteriol173:910–915
    [Google Scholar]
  2. Appia-Ayme C., Guiliani N., Ratouchniak J., Bonnefoy V.. 1999; Characterization of an operon encoding two c-type cytochromes, an aa3-type cytochrome oxidase, and rusticyanin in Thiobacillus ferroxidans ATCC 33020. Appl Environ Microbiol65:4781–4787
    [Google Scholar]
  3. Arslan E., Schulz H., Zufferey R., Kûnzlér P., Thöny-Meyer L.. 1998; Overproduction of the Bradyrhizobium japonicum c-type cytochrome subunits of the cbb3 oxidase in Escherichia coli. Biochem Biophys Res Comm251:744–747[CrossRef]
    [Google Scholar]
  4. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. 1987; Current Protocols in Molecular Biology New York: Greene Publishing;
  5. Ball C. A., Osuna R., Ferguson K. C., Johnson R. C.. 1992; Dramatic changes in Fis levels upon nutrient upshift in Escherichia coli. J Bacteriol174:8043–8056
    [Google Scholar]
  6. Bengrine A., Guiliani N., Appia C., Borne F., Chippaux M., Bonnefoy V.. 1995; Studies of the rusticyanin encoding gene of Thiobacillus ferrooxidans ATCC 33020. In Biohydrometallurgical Processing vol 2 pp.75–83Edited by Jerez C. A., Vargas T., Toledo H., Wiertz J.. City: University of Chile;
    [Google Scholar]
  7. Bengrine A., Guiliani N., Chippaux M., Bonnefoy V.. 1997; Expression of rusticyanin gene from Thiobacillus ferrooxidans strain ATCC 33020 in Escherichia coli and Thiobacillus ferrooxidans. pp3·1–3·2 In IBS-Biomine City: Australian Mineral Foundation;
    [Google Scholar]
  8. Bengrine A., Guiliani N., Appia-Ayme C., Jedlicki E., Holmes D. S., Chippaux M., Bonnefoy V.. 1998; Sequence and expression of the rusticyanin structural gene from Thiobacillus ferrooxidans ATCC 33020 strain. Biochim Biophys Acta 1443;99–112[CrossRef]
    [Google Scholar]
  9. Cobley J. G., Haddock B. A.. 1975; The respiratory chain of Thiobacillus ferrooxidans: the reduction of cytochromes by Fe2+ and the preliminary characterization of rusticyanin a novel “blue” copper protein. FEBS Lett60:29–33[CrossRef]
    [Google Scholar]
  10. Cox J. C., Boxer D. H.. 1978; The purification and some properties of rusticyanin, a blue copper protein involved in iron(II) oxidation from Thiobacillus ferrooxidans. Biochem J174:497–502
    [Google Scholar]
  11. Cox J. C., Boxer D. H.. 1986; The role of rusticyanin, a blue copper protein, in the electron transport chain of Thiobacillus ferrooxidans grown on iron or thiosulfate. Biotechnol Appl Biochem8:269–275
    [Google Scholar]
  12. Das A., Mishra A. K., Roy P.. 1992; Anaerobic growth on elemental sulfur using dissimilar iron reduction by autotrophic Thiobacillus ferrooxidans. FEMS Microbiol Lett97:
    [Google Scholar]
  13. Drobner E., Huber H., Stetter K. O.. 1990; Thiobacillus ferrooxidans, a facultative hydrogen oxidizer. Appl Environ Microbiol56:2922–2923
    [Google Scholar]
  14. Espejo R. T., Romero P.. 1987; Growth of Thiobacillus ferrooxidans on elemental sulfur. Appl Environ Microbiol53:1907–1912
    [Google Scholar]
  15. Espejo R. T., Escobar B., Jedlicki E., Uribe P., Badilla-Ohlbaum R.. 1988; Oxidation of ferrous iron and elemental sulfur by Thiobacillus ferrooxidans. Appl Environ Microbiol54:1694–1699
    [Google Scholar]
  16. Fritsch J., Rothfuchs R., Rauhut R., Klug G.. 1995; Identification of an mRNA element promoting rate-limiting cleavage of the polycistronic puf mRNA in Rhodobacter capsulatus by an enzyme similar to RNase E. Mol Microbiol15:1017–1029[CrossRef]
    [Google Scholar]
  17. Giudici-Orticoni M.-T., Guerlesquin F., Bruschi M., Nitschke W.. 1999; Interaction-induced redox switch in the electron transfer complex rusticyanin-cytochrome c4. J Biol Chem274:30365–30369[CrossRef]
    [Google Scholar]
  18. Green J., Anjum M. F., Guest J. R.. 1996; The ndh-binding protein (Nbp) regulates the ndh gene of Escherichia coli in response to growth phase and is identical to Fis. Mol Microbiol20:1043–1055[CrossRef]
    [Google Scholar]
  19. Guiliani N., Bengrine A., Borne F., Chippaux M., Bonnefoy V.. 1997; Alanyl tRNA synthetase gene of extreme acidophilic chemolithotrophic Thiobacillus ferrooxidans is highly homologous to alaS from all living kingdoms but cannot be transcribed from its promoter in Escherichia coli. Microbiology143:2179–2187[CrossRef]
    [Google Scholar]
  20. Hazeu W., Bijleveld W., Grotenhuis J. T. C., Kakes E., Kuenen J. G.. 1986; Kinetics and energetics of reduced sulphur oxidation by chemostat cultures of Thiobacillus ferrooxidans. Antonie van Leeuwenhoek52:507–518[CrossRef]
    [Google Scholar]
  21. Jedlicki E., Reyes R., Jordana X., Mercereau-Puijalon O., Allende J. E.. 1986; Rusticyanin: initial studies on the regulation of its synthesis and gene isolation. Biotechnol Appl Biochem8:342–350
    [Google Scholar]
  22. Kulpa F. Jr, Mjoli N., Roskey M. T.. 1986a; Comparison of iron and sulfur oxidation in Thiobacillus ferrooxidans: inhibition of iron oxidation by growth on sulfur. Biotechnol Bioeng Symp16:289–295
    [Google Scholar]
  23. Kulpa C. F., Roskey M. T., Mjoli N.. 1986b; Construction of genomic libraries and induction of iron oxidation in Thiobacillus ferrooxidans. Biotechnol Appl Biochem8:330–341
    [Google Scholar]
  24. Landesman J., Duncan D. W., Walden C. C.. 1966; Oxidation of inorganic sulfur compounds by washed cell suspension of Thiobacillus ferrooxidans. Can J Microbiol12:957–964[CrossRef]
    [Google Scholar]
  25. Leduc L. G., Ferroni G. D.. 1994; The chemolithotrophic bacterium Thiobacillus ferrooxidans. FEMS Microbiol Lett108:103–120
    [Google Scholar]
  26. Lee C., Levin A., Branton D.. 1987; Copper staining: a five minute protein stain for sodium dodecyl sulfate-polyacrylamide gels. Anal Biochem166:308–312[CrossRef]
    [Google Scholar]
  27. Levicán G., Bruscella P., Guacucano M., Inostroza C., Bonnefoy V., Holmes D. S., Jedlicki E.. 2002; Characterization of the petI and res operons of Acidithiobacillus ferrooxidans. J Bacteriol184:1498–1501[CrossRef]
    [Google Scholar]
  28. Mansch R., Sand W.. 1992; Acid-stable cytochromes in ferrous ion oxidizing cell-free preparations from Thiobacillus ferrooxidans. FEMS Microbiol Lett92:83–88[CrossRef]
    [Google Scholar]
  29. Margalith P., Silver M., Lundgren G.. 1966; Sulfur oxidation by the iron bacterium Ferrobacillus ferrooxidans. J Bacteriol92:1706–1709
    [Google Scholar]
  30. Muir M. K., Anderson T.. 1977; Determination of ferrous iron in copper-process metallurgical solutions by the o-phenanthroline colorimetric method. Metallurg Trans8B:517
    [Google Scholar]
  31. Nilsson L., Vanet A., Vijgenboom E., Bosch L.. 1990; The role of FIS in trans activation of stable RNA operons in E. coli. EMBO J9:727–734
    [Google Scholar]
  32. Nilsson L., Verbeek H., Vijgenboom E., van Drunen C., Vanet A., Bosch L.. 1992; FIS-dependent trans-activation of stable RNA operons of Escherichia coli under various growth conditions. J Bacteriol174:921–929
    [Google Scholar]
  33. Ohmura N., Sasaki K., Matsumoto N., Saiki H.. 2002; Anaerobic respiration using Fe3+, S0, and H2 in the chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans. J Bacteriol184:2081–2087[CrossRef]
    [Google Scholar]
  34. Osorio G., Varela P., Arrendondo R., Seeger M., Amaro A. M., Jerez C. A.. 1993; Changes in global gene expression of Thiobacillus ferrooxidans when grown on elementary sulfur. In Biohydrometallurgical technologies vol 2 pp.565–575Edited by Torma A. E., Apel M. L., Brierley C. L.. Warrendale, PA: The Minerals, Metals and Material Society (TMS;
    [Google Scholar]
  35. Pronk J. T., Meijer W. M., Hazeu W., Van Dijken J. P., Bos P., Kuenen J. G.. 1991; Growth of Thiobacillus ferrooxidans on formic acid. Appl Environ Microbiol5:2057–2062
    [Google Scholar]
  36. Pronk J. T., De Bruyn J. C., Bos P., Kuenen J. G.. 1992; Anaerobic growth of Thiobacillus ferrooxidans. Appl Environ Microbiol58:2227–2230
    [Google Scholar]
  37. Pulgar V., Nunez L., Moreno F., Orellana O., Jedlicki E.. 1993; Expression of rusticyanin gene is regulated by growth condition in Thiobacillus ferrooxidans. In Biohydrometallurgical technologies vol 2 pp.541–548Edited by Torma A. E., Apel M. L., Brierley C. L.. Warrendale, PA: The Minerals, Metals and Material Society (TMS;
    [Google Scholar]
  38. Rohwerder T., Gehrke T., Kinzler K., Sand W.. 2003; Bioleaching review part A: progress in bioleaching: fundamentals and mechanism of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol63:239–248[CrossRef]
    [Google Scholar]
  39. Sugio T., Domatsu C., Munakata O., Tano T., Imai K.. 1985; Role of ferric ion-reducing system in sulfur oxidation of Thiobacillus ferrooxidans. Appl Environ Microbiol49:1401–1406
    [Google Scholar]
  40. Sugio T., Mizunashi W., Tano T., Imai K.. 1986; Production of ferrous iron as intermediates during aerobic sulfur oxidation in Thiobacillus ferrooxidans. Agric Biol Chem50:2755–2761[CrossRef]
    [Google Scholar]
  41. Sugio T., Wada K., Mori M., Inagaki K., Tano T.. 1988; Synthesis of an iron-oxidizing system during growth of Thiobacillus ferrooxidans on sulfur-basal salts medium. Appl Environ Microbiol54:150–152
    [Google Scholar]
  42. Suzuki I., Takeuchi T. L., Yuthasastrakosol T. D., Oh J. K.. 1990; Ferrous iron and sulfur oxidation and ferric iron reduction activities of Thiobacillus ferrooxidans are affected by growth on ferrous iron, sulfur, or a sulfide ore. Appl Environ Microbiol56:1620–1626
    [Google Scholar]
  43. Wackwitz B., Bongaerts J., Goodman S. D., Unden G.. 1999; Growth phase-dependent regulation of nuoA–N expression in Escherichia coli K-12 by the Fis protein: upstream binding sites and bioenergetic significance. Mol Gen Genet262:876–883[CrossRef]
    [Google Scholar]
  44. Yarzábal A., Duquesne K., Bonnefoy V.. 2001; Expression of the rus gene encoding rusticyanin in Acidithiobacillus ferrooxidans ATCC 33020 strain. In Biohydrometallurgy: Fundamentals, Technology and Sustainable Development pp.253–261Edited by Ciminelli V. S. T., Garcia O. Jr. Amsterdam: Elsevier;
    [Google Scholar]
  45. Yarzábal A., Brasseur G., Bonnefoy V.. 2002a; Cytochromes c of Acidithiobacillus ferrooxidans. FEMS Microbiol Lett209:189–195[CrossRef]
    [Google Scholar]
  46. Yarzábal A., Brasseur G., Ratouchniak J., Lund K., Lemesle-Meunier D., DeMoss J. A., Bonnefoy V.. 2002b; The high molecular weight cytochrome c Cyc2 of Acidithiobacillus ferrooxidans is an outer membrane protein. J Bacteriol184:313–317[CrossRef]
    [Google Scholar]
  47. Yarzábal A., Duquesne K., Bonnefoy V.. 2003; Rusticyanin gene expression of Acidithiobacillus ferrooxidans ATCC33020 strain in sulfur- and in ferrous iron-media. Hydrometallurgy71:107–114[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26966-0
Loading
/content/journal/micro/10.1099/mic.0.26966-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error