1887

Abstract

Production of ammonia is difficult to find among the various studies of amino acid metabolism in protozoa. Several studies suggest that catabolism of arginine to ammonium is important for the growth of trichomonads. Trichomonads are amitochondriate zooflagellates that thrive under microaerophilic and anaerobic conditions. The authors were able to detect accumulation of ammonium ions and ammonia in cultures of and , including those resistant to metronidazole. Ammonium ions and ammonia were detected using the indophenol colorimetric method. Cells incubated overnight under an ambient oxygen gas phase had 0·9 mM soluble ammonium (NH and NH) or a 20 % greater concentration of ammonium relative to sterile growth medium that had been incubated similarly. Production of ammonia itself was confirmed by analysis of a wick that was moistened with sulfuric acid (20 mM) and placed above the liquid in sealed cultures of a strain of . The wicks from these cultures captured the equivalent of 0·048 mM volatile ammonia (NH) from the liquid as compared to 0·021 mM volatile ammonia from sterile medium after overnight incubation. Intact trichomonads, 0·7×10 cells ml equivalent to 0·7 mg protein ml, incubated in Doran's buffer with or without (1 mM) -arginine produced significant amounts of soluble ammonium (0·07 mM and 0·04 mM, respectively) during 60 min. The results indicate that ammonium ions and the more irritating ammonia are significant metabolites of trichomonads. In addition, based upon end-product amounts, it appears that the rate of arginine metabolism is of the same order of magnitude as that for carbohydrate metabolism by trichomonads.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26939-0
2004-05-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/5/mic1501139.html?itemId=/content/journal/micro/10.1099/mic.0.26939-0&mimeType=html&fmt=ahah

References

  1. Akman L., Aksoy S. 2001; A novel application of gene arrays: Escherichia coli array provides insight into the biology of the obligate endosymbiont of tsetse flies. Proc Natl Acad Sci U S A 98:7546–7551 [CrossRef]
    [Google Scholar]
  2. Bacchi C. J., Garafalo G. J., Santana A., Hannan J. C., Bitonti A. J., McCann P. P. 1989; Trypanosoma brucei brucei: regulation of ornithine decarboxylase in procyclic forms and trypomastigotes. Exp Parasitol 68:392–402 [CrossRef]
    [Google Scholar]
  3. Berthelot M. P. E. 1859; Violet d'aniline. Repert Chim Appl 1:284
    [Google Scholar]
  4. Biagini G. A., Yarlett N., Ball G. E., Billetz A. C., Lindmark D. G., Martinez M. P., Lloyd D., Edwards M. R. 2003; Bacterial-like energy metabolism in the amitochondriate protozoon Hexamita inflata. Mol Biochem Parasitol 128:11–19 [CrossRef]
    [Google Scholar]
  5. Casiano-Colon A., Marquis R. E. 1988; Role of arginine deiminase system in protecting oral bacteria and an enzymatic basis for acid tolerance. Appl Environ Microbiol 54:1318–1324
    [Google Scholar]
  6. Cazzulo J. J. 2003; Amino acid metabolism. In Molecular Medical Parasitology pp. 171–197 Edited by Marr J. J., Nilsen T., Komuniecki R. London, UK: Academic Press;
    [Google Scholar]
  7. Cazzulo J. J., Franke de Cazzulo B. M., Engel J. C., Cannata J. J. B. 1985; End products and enzyme levels of aerobic glucose fermentation in trypanosomatids. Mol Biochem Parasitol 16:329–343 [CrossRef]
    [Google Scholar]
  8. Chaney A. L., Marbach E. P. 1962; Modified reagents for determination of urea and ammonia. Clin Chem 8:130–132
    [Google Scholar]
  9. Chapman A., Linstead D. J., Lloyd D., Williams J. 1985; 13C-NMR reveals glycerol as an unexpected major metabolite of the protozoan parasiteTrichomonas vaginalis. FEBS Lett 191:287–292 [CrossRef]
    [Google Scholar]
  10. Chen K. C., Amsel R., Eschenbach D. A., Holmes K. K. 1982; Biochemical diagnosis of vaginitis: determination of diamines in vaginal fluid. J Infect Dis 145:337–345 [CrossRef]
    [Google Scholar]
  11. Chyle M., Stepan J., Chyle P., Patocka F. 1971; Some enzyme and isoenzyme activities of Trichomonas vaginalis. Folia Microbiol (Praha 16:142–143 [CrossRef]
    [Google Scholar]
  12. Coleman G. S. 1979; Rumen ciliate protozoa. In Biochemistry and Physiology of Protozoa vol. 2 pp. 381–408 Edited by Levandowsky M., Hutner S. H. New York: Academic Press;
    [Google Scholar]
  13. Coombs G. H., Mottram J. C. 2001; Trifluoromethionine, a prodrug designed against methionine gamma-lyase-containing pathogens, has efficacy in vitro and in vivo against Trichomonas vaginalis. Antimicrob Agents Chemother 45:1743–1745 [CrossRef]
    [Google Scholar]
  14. Cross G. A., Klein R. A., Linstead D. J. 1975; Utilization of amino acids by Trypanosoma brucei in culture: l-threonine as a precursor for acetate. Parasitology 71:311–326 [CrossRef]
    [Google Scholar]
  15. Diamond L. S. 1957; The establishment of various trichomonads of animals and man in axenic cultures. J Parasitol 43:488–490
    [Google Scholar]
  16. Gorrell T. E. 1985; Effect of culture medium iron content on the biochemical composition and metabolism of Trichomonas vaginalis. J Bacteriol 161:1228–1230
    [Google Scholar]
  17. Gutteridge W. E., Coombs G. H. 1977; Protein metabolism. In Biochemistry of Parasitic Protozoa pp. 98–99 Baltimore: University Park Press;
    [Google Scholar]
  18. Honigberg B. M. 1967; Chemistry of parasitism among some protozoa. In Protozoa pp. 695–814Edited by Kidder G. W. New York: Academic Press;
    [Google Scholar]
  19. Kidder G. W. 1951; Nutrition and metabolism of protozoa. Annu Rev Microbiol 5:139–155 [CrossRef]
    [Google Scholar]
  20. Kidder G. W. 1967; Nitrogen: distribution, nutrition, and metabolism. In Protozoa pp. 93–159Edited by Kidder G. W. New York: Academic Press;
    [Google Scholar]
  21. Knodler L. A., Edwards M. R., Schofield P. J. 1994; The intracellular amino acid pools of Giardia intestinalis, Trichomonas vaginalis, and Crithidia luciliae. Exp Parasitol 79:117–125 [CrossRef]
    [Google Scholar]
  22. Kulda J., Tachezy J., Cerkasovova A. 1993; In vitro induced anaerobic resistance to metronidazole inTrichomonas vaginalis. J Eukaryot Microbiol 40:262–269 [CrossRef]
    [Google Scholar]
  23. Linstead D., Cranshaw M. A. 1983; The pathway of arginine catabolism in the parasitic flagellate Trichomonas vaginalis. Mol Biochem Parasitol 8:241–252 [CrossRef]
    [Google Scholar]
  24. Lowe P. N., Rowe A. F. 1986; Aminotransferase activities in Trichomonas vaginalis. Mol Biochem Parasitol 21:65–74 [CrossRef]
    [Google Scholar]
  25. Mah R. A., Hungate R. E. 1965; Physiological studies of the rumen ciliate, Ophryoscolex purkynei Stein. . J Protozool 12:131–136 [CrossRef]
    [Google Scholar]
  26. Maroulis S. L., Schofield P. J., Edwards M. R. 2003; Osmoregulation in the parasitic protozoan Tritrichomonas foetus. Appl Environ Microbiol 69:4527–4533 [CrossRef]
    [Google Scholar]
  27. Marr J. J. 1979; Carbohydrate metabolism in Leishmania. In Biochemistry and Physiology of Protozoa vol. 2 pp. 313–340Edited by Levandowsky M., Hutner S. H. New York: Academic Press;
    [Google Scholar]
  28. Minotto L., Edwards M. R., Bagnara A. S. 2000; Trichomonas vaginalis: characterization, expression, and phylogenetic analysis of a carbamate kinase gene sequence. Exp Parasitol 95:54–62 [CrossRef]
    [Google Scholar]
  29. Meingassner J. G., Mieth H., Czok R., Lindmark D. G., Müller M. 1978; Assay conditions and the demonstration of nitroimidazole resistance in Tritrichomonas foetus. Antimicrob Agents Chemother 13:1–3 [CrossRef]
    [Google Scholar]
  30. Müller M., Gorrell T. E. 1983; Metabolism and metronidazole uptake in Trichomonas vaginalis isolates with different metronidazole susceptibilities. Antimicrob Agents Chemother 24:667–673 [CrossRef]
    [Google Scholar]
  31. Müller M., Meingassner J. G., Miller W. A., Ledger W. J. 1980; Three metronidazole-resistant strains of Trichomonas vaginalis from the United States. Am J Obstet Gynecol 138:808–812
    [Google Scholar]
  32. Müller M., Lossick J. G., Gorrell T. E. 1988; In vitro susceptibility of Trichomonas vaginalis to metronidazole and treatment outcome in vaginal trichomoniasis. Sex Transm Dis 15:17–24 [CrossRef]
    [Google Scholar]
  33. Nielsen M. H., Nielsen R. 1975; Electron microscopy of Trichomonas vaginalis Donné: interaction with vaginal epithelium in human trichomoniasis. Acta Pathol Microbiol Scand [B] 83:305–320
    [Google Scholar]
  34. Petrin D., Delgaty K., Bhatt R., Garber G. 1998; Clinical and microbiological aspects of Trichomonas vaginalis. Clin Microbiol Rev 11:300–317
    [Google Scholar]
  35. Pybus V., Onderdonk A. B. 1997; Evidence for a commensal, symbiotic relationship between Gardnerella vaginalis and Prevotella bivia involving ammonia: potential significance for bacterial vaginosis. J Infect Dis 175:406–413 [CrossRef]
    [Google Scholar]
  36. Rein M. 1989; Clinical manifestations of urogenital trichomoniasis in women. In Trichomonads Parasitic in Humans pp. 225–245Edited by Honigberg B. M. New York: Springer;
    [Google Scholar]
  37. Rowe A. F., Lowe P. N. 1986; Modulation of amino acid and 2-oxo acid pools in Trichomonas vaginalis by aspartate aminotransferase inhibitors. Mol Biochem Parasitol 21:17–24 [CrossRef]
    [Google Scholar]
  38. Scott D. A., North M. J., Coombs G. H. 1995; Trichomonas vaginalis: amoeboid and flagellated forms synthesize similar proteinases. Exp Parasitol 80:345–348 [CrossRef]
    [Google Scholar]
  39. Steinbuchel A., Müller M. 1986; Glycerol, a metabolic end product of Trichomonas vaginalis and Tritrichomonas foetus. Mol Biochem Parasitol 20:45–55 [CrossRef]
    [Google Scholar]
  40. Tachezy J., Kulda J., Tomková E. 1993; Aerobic resistance of Trichomonas vaginalis to metronidazole inducedin vitro. Parasitology 106:31–37 [CrossRef]
    [Google Scholar]
  41. ter Kuile B. H. 1996; Metabolic adaptation of Trichomonas vaginalis to growth rate and glucose availability. Microbiology 142:3337–3345 [CrossRef]
    [Google Scholar]
  42. Turner A. C., Lushbaugh W. B. 1988; Trichomonas vaginalis: characterization of its glutamate dehydrogenase. Exp Parasitol 67:47–53 [CrossRef]
    [Google Scholar]
  43. van Weelden S. W., Fast B., Vogt A., van der Meer P., Saas J., van Hellemond J. J., Tielens A. G., Boshart M. 2003; Procyclic Trypanosoma brucei do not use Krebs cycle activity for energy generation. J Biol Chem 278:12854–12863 [CrossRef]
    [Google Scholar]
  44. Verdu E. F., Armstrong D., Sabovcikova L., Idstrom J. P., Cederberg C., Blum A. L., Bercik P. 1998; High concentrations of ammonia, but not volatile amines, in gastric juice of subjects with Helicobacter pylori infection. Helicobacter 3:97–102 [CrossRef]
    [Google Scholar]
  45. Warton A., Honigberg B. M. 1979; Structure of trichomonads as revealed by scanning electron microscopy. J Protozool 26:56–62 [CrossRef]
    [Google Scholar]
  46. Weatherburn M. W. 1967; Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 39:971 [CrossRef]
    [Google Scholar]
  47. Yarlett N. 1988; Polyamine biosynthesis and inhibition in Trichomonas vaginalis. Parasitol Today 4:357–360 [CrossRef]
    [Google Scholar]
  48. Yarlett N. 2000; Trichomonads. In Encyclopedia of Life Science London: Macmillan; () http//www.els.net
    [Google Scholar]
  49. Yarlett N., Martinez M. P., Moharrami M. A., Tachezy J. 1996a; The contribution of the arginine dihydrolase pathway to energy metabolism by Trichomonas vaginalis. Mol Biochem Parasitol 78:117–125 [CrossRef]
    [Google Scholar]
  50. Yarlett N., Goldberg B., Moharrami M. A., Bacchi C. J. 1996b; Subcellular localization of the enzymes of the arginine dihydrolase pathway in Trichomonas vaginalis and Tritrichomonas foetus. J Eukaryot Microbiol 41:554–559
    [Google Scholar]
  51. Yoshida N., Camargo E. P. 1978; Ureotelism and ammonotelism in trypanosomatids. J Bacteriol 136:1184–1186
    [Google Scholar]
  52. Zuo X., Lockwood B. C., Coombs G. H. 1995; Uptake of amino acids by the parasitic flagellated protist Trichomonas vaginalis. Microbiology 141:2637–2642 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26939-0
Loading
/content/journal/micro/10.1099/mic.0.26939-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error