-
Volume 150,
Issue 5,
2004
Volume 150, Issue 5, 2004
- Microbiology Comment
-
- Physiological Adaptations In Amitochondriate Protists Of Clinical Significance
-
-
-
tvcp12: a novel Trichomonas vaginalis cathepsin L-like cysteine proteinase-encoding gene
More LessTrichomonas vaginalis is the causative agent of trichomoniasis, one of the most common sexually transmitted diseases in humans. This protozoan has multiple proteinases that are mainly of the cysteine proteinase (CP) type, some of which are known to be involved in the parasite's virulence. Here, a novel T. vaginalis CP-encoding gene, tvcp12, was identified and characterized. tvcp12 is 948 bp long and encodes a predicted 34·4 kDa protein that has the characteristics of the papain-like CP family. TvCP12 does not appear to have a signal peptide, suggesting that this is a cytoplasmic CP. By Southern blot assays, the tvcp12 gene was found as a single copy in the T. vaginalis genome. Remarkably, Northern blot experiments showed a single transcript band of ∼1·3 kb in the mRNA obtained from parasites grown in low iron conditions and no transcript was observed in the mRNA from parasites grown in high iron conditions. By RT-PCR assays, a 270 bp band was amplified from the cDNA of parasites grown in low iron medium, which was very faint when cDNA from parasites grown in high iron conditions was used. Transcripts of the 3′ region obtained in both iron conditions presented differences in their poly(A) tail length. These data suggest that tvcp12 is another gene that is negatively regulated by iron and that the length of the poly(A) tail may be one of the factors involved in the iron-modulated protein expression.
-
-
-
Production of ammonia by Tritrichomonas foetus and Trichomonas vaginalis
More LessProduction of ammonia is difficult to find among the various studies of amino acid metabolism in protozoa. Several studies suggest that catabolism of arginine to ammonium is important for the growth of trichomonads. Trichomonads are amitochondriate zooflagellates that thrive under microaerophilic and anaerobic conditions. The authors were able to detect accumulation of ammonium ions and ammonia in cultures of Tritrichomonas foetus and Trichomonas vaginalis, including those resistant to metronidazole. Ammonium ions and ammonia were detected using the indophenol colorimetric method. Cells incubated overnight under an ambient oxygen gas phase had 0·9 mM soluble ammonium (NH4 + and NH3) or a 20 % greater concentration of ammonium relative to sterile growth medium that had been incubated similarly. Production of ammonia itself was confirmed by analysis of a wick that was moistened with sulfuric acid (20 mM) and placed above the liquid in sealed cultures of a strain of Trichomonas vaginalis. The wicks from these cultures captured the equivalent of 0·048 mM volatile ammonia (NH3) from the liquid as compared to 0·021 mM volatile ammonia from sterile medium after overnight incubation. Intact trichomonads, 0·7×106 cells ml−1 equivalent to 0·7 mg protein ml−1, incubated in Doran's buffer with or without (1 mM) l-arginine produced significant amounts of soluble ammonium (0·07 mM and 0·04 mM, respectively) during 60 min. The results indicate that ammonium ions and the more irritating ammonia are significant metabolites of trichomonads. In addition, based upon end-product amounts, it appears that the rate of arginine metabolism is of the same order of magnitude as that for carbohydrate metabolism by trichomonads.
-
-
-
PCR-based identification of zoonotic isolates of Blastocystis from mammals and birds
More LessThe genotype of Blastocystis isolated from humans and animals is highly polymorphic. Therefore, it is important to compare the genotypes of Blastocystis isolates from humans and animals to determine the zoonotic potential of animal isolates. PCR-based genotype classification using known sequence-tagged site (STS) primers allows identification of zoonotic isolates of animal origin. To this end, 51 isolates from monkeys, cattle, pigs, chickens, quails and pheasants were subjected to genotype analysis using seven kinds of STS primers. Out of the 51 isolates, 39 were identified as one of the known genotypes, four showed mixed genotypes, and eight were unknown genotypes as these were negative for all STS primers. When these results were combined with previous studies on 41 isolates from animals and compared with the diversity of genotypes of 102 human Blastocystis hominis isolates, 67·4 % (62/92) of isolates from mammals and birds were identical to human B. hominis genotypes. Since the unknown genotype of human origin had been placed into an additional clade in the small-subunit rRNA gene phylogeny, further molecular study on the eight isolates of unknown genotype from the present study will facilitate our understanding of their zoonotic potential.
-
-
-
Phylogenetic identification of Pneumocystis murina sp. nov., a new species in laboratory mice
More LessPneumocystis is a fungal genus that contains multiple species. One member of the genus that has not been formally analysed for its phylogenetic relationships and possible species status is the Pneumocystis found in laboratory mice, Pneumocystis murina sp. nov. (type strain ATCC PRA-111T=CBS 114898T), formerly known as Pneumocystis carinii f. sp. muris. To advance research in this area, approximately 3000 bp of additional DNA sequence were obtained from the locus encoding rRNAs. This sequence and others were used to determine genetic distances between P. murina and other members of the genus. These distances indicated that P. murina DNA is most similar to that of the species of Pneumocystis found in laboratory rats. Nevertheless, P. murina is at least as diverged from these other Pneumocystis species as species in other fungal genera are from each other. The 18S rRNA gene sequence divergence exhibited by P. murina could not be ascribed to accelerated evolution of this gene as similar levels of divergence were observed at seven other loci. When five genes were used to construct phylogenetic trees for five Pneumocystis taxa, including P. murina, all the trees had the same topology, indicating that genes do not flow among these taxa. The gene trees were all strongly supported by statistical tests. When sequences from the rRNA-encoding locus were used to estimate the time of divergence of P. murina, the results indicated that P. murina is as old as the mouse. Taken together, these data support previous recognition of multiple species in the genus and indicate that P. murina is a phylogenetic species as well.
-
-
-
Molecular typing of Pneumocystis jirovecii found in formalin-fixed paraffin-embedded lung tissue sections from sudden infant death victims
Previous studies have provided histological evidence of an association between primary Pneumocystis infection and sudden infant death syndrome (SIDS). The aim of this work was to determine the species of clustered Pneumocystis organisms found in formalin-fixed paraffin-embedded (FFPE) lung tissue sections from Chilean sudden infant death (SID) victims. This approach needed first to optimize a DNA extraction method from such histological sections. For that purpose, the QIAamp DNA Isolation from Paraffin-Embedded Tissue method (Qiagen) was first tested on FFPE lung tissue sections of immunosuppressed Wistar rats inoculated with rat-derived Pneumocystis. Successful DNA extraction was assessed by the amplification of a 346 bp fragment of the mitochondrial large subunit rRNA gene of the Pneumocystis species using a previously described PCR assay. PCR products were analysed by direct sequencing and sequences corresponding to Pneumocystis carinii were found in all the samples. This method was then applied to FFPE lung tissue sections from Chilean SID victims. Pneumocystis jirovecii was successfully identified in the three tested samples. In conclusion, an efficient protocol for isolating PCR-ready DNA from FFPE lung tissue sections was developed. It established that the Pneumocystis species found in the lungs of Chilean SID victims was P. jirovecii.
-
-
-
Similar genotypes of Pneumocystis jirovecii in different forms of Pneumocystis infection
This study describes the genotyping of Pneumocystis jirovecii organisms isolated from three groups of patients that developed diverse forms of P. jirovecii infection; the patients were monitored in the same French hospital. Forty archival specimens from 13 adults with Pneumocystis pneumonia, eight adults colonized by P. jirovecii and 19 immunocompetent infants infected with the fungus contemporaneously with a bronchiolitis episode were analysed retrospectively. Genotyping was performed by analysis of sequences of the internal transcribed spacer (ITS)1 and ITS2 regions, and of the dihydropteroate synthase (DHPS) locus. At the ITS regions, a high diversity of genotypes, identical main genotypes (B1a3 and B2a1) and the occurrence of mixed infections (more than one genotype) were observed in the three patient groups. At the DHPS locus, the results indicated the presence of mutants in the two adult groups, as well as in the infant group. Consequently, at these two independent genomic regions, P. jirovecii isolates from patients who developed different forms of infection and who lived in the same geographical region presented common characteristics. These results suggest that patients infected with P. jirovecii, whatever the form of infection they present, are part of a common human reservoir for P. jirovecii.
-
-
-
Inability of Pneumocystis organisms to incorporate bromodeoxyuridine suggests the absence of a salvage pathway for thymidine
More LessBecause thymidine metabolism is a potential target for therapy of Pneumocystis pneumonia, it was investigated whether Pneumocystis organisms have a salvage pathway for thymidine by administering 5-bromo-2′-deoxyuridine (BrdU) to mice and rats with Pneumocystis pneumonia. Although BrdU incorporation was detected in host cells, no incorporation was seen in Pneumocystis organisms infecting either rats or mice. This suggests that Pneumocystis organisms do not have a salvage pathway for thymidine, and that inhibitors of de novo synthesis, such as thymidylate synthase inhibitors, may be effective drugs for treating Pneumocystis pneumonia.
-
-
-
The plasma membrane of microaerophilic protists: oxidative and nitrosative stress
The trans-plasma-membrane electrochemical potential of microaerophilic protists was monitored by the use of voltage-sensitive charged lipophilic fluorophores; of the many available probes, the anionic oxonol dye bis(1,3-dibarbituric acid)-trimethine oxonol [DiBAC4(3)] is an example of one which has been successfully employed using fluorescence microscopy, confocal laser-scanning microscopy and flow cytometry. Several microaerophilic protists have been investigated with this dye; these were Giardia intestinalis, Trichomonas vaginalis, Tritrichomonas foetus, Hexamita inflata and Mastigamoeba punctachora. Under conditions where they exhibit normal vitality, these organisms exclude DiBAC4(3) by virtue of their maintenance of a plasma-membrane potential (negative inside). Uptake of the fluorophore is indicative of disturbance to this membrane (i.e. by inhibition of pump/leak balance, blockage of channels or generation of ionic leaks), and is indicative of metabolic perturbation or environmental stress. Here, it is shown that oxidative or nitrosative stress depolarizes the plasma membranes of the aforementioned O2-sensitive organisms and allows DiBAC4(3) influx. Oxonol uptake thereby provides a sensitive and early indication of plasma-membrane perturbation by agents that may lead to cytotoxicity and eventually to cell death by necrotic or apoptotic pathways.
-
-
-
Intron-containing β-tubulin transcripts in Cryptosporidium parvum cultured in vitro
More LessThe genome of Cryptosporidium parvum contains a relatively small number of introns, which includes the β-tubulin gene with only a single intron. Recently, it was observed that the intron was not removed from some of the β-tubulin transcripts in the late life cycle stages cultured in vitro. Although normally spliced β-tubulin mRNA was detected in all parasite intracellular stages by RT-PCR (e.g. HCT-8 or Caco-2 cells infected with C. parvum for 12–72 h), at 48–72 h post-infection unprocessed β-tubulin transcripts containing intact introns started to appear in parasite mRNA within infected host cells. The intron-containing transcripts could be detected by fluorescence in situ hybridization (FISH) using an intron-specific probe. The intron-containing β-tubulin transcripts appeared unique to the in vitro-cultured C. parvum, since they were not detected in parasite-infected calves at 72 h. As yet, it is unclear whether the late life cycle stages of C. parvum are partially deficient in intron-splicing or the intron-splicing processes have merely slowed, both of which would allow the detection of intron-containing transcripts. Another possible explanation is that the decay in transcript processing might simply be due to the onset of parasite death. Nonetheless, the appearance of intron-containing transcripts coincides with the arrest of C. parvum development in vitro. This unusual observation prompts speculation that the abnormal intron-splicing of β-tubulin transcripts may be one of the factors preventing complete development of this parasite in vitro. Furthermore, the presence of both processed and unprocessed introns in β-tubulin transcripts in vitro may provide a venue for studying overall mechanisms for intron-splicing in this parasite.
-
-
-
Functional characterization of replication protein A2 (RPA2) from Cryptosporidium parvum
More LessReplication protein A (RPA) is a heterotrimeric complex of single-stranded DNA-binding proteins that play multiple roles in eukaryotic DNA metabolism. The RPA complex is typically composed of heterologous proteins (termed RPA1, RPA2 and RPA3) in animals, plants and fungi, which possess different functions. Previously, two distinct, short-type RPA large subunits (CpRPA1 and CpRPA1B) from the apicomplexan parasite Cryptosporidium parvum were characterized. Here are reported the identification and characterization of a putative middle RPA subunit (CpRPA2) from this unicellular organism. Although the CpRPA2 gene encodes a predicted 40·1 kDa peptide, which is larger than other RPA2 subunits characterized to date, Western blot analysis of oocyst preparations detected a native CpRPA2 protein with a molecular mass of approximately 32 kDa, suggesting that CpRPA2 might undergo post-translational cleavage or the gene was translated at an alternative start codon. Immunofluorescence microscopy using a rabbit anti-CpRPA2 antibody revealed that CpRPA2 protein was mainly distributed in the cytosol (rather than the nuclei) of C. parvum sporozoites. Semi-quantitative RT-PCR data indicated that CpRPA2 was differentially expressed in a tissue culture model with highest expression in intracellular parasites infecting HCT-8 cells for 36 and 60 h. Sequence comparison suggests that RPA2 is a group of poorly conserved proteins. Nonetheless, functional analyses of recombinant proteins confirmed that CpRPA2 is a single-stranded DNA-binding protein and that it could serve as an in vitro phosphorylation target by a DNA-dependent protein kinase. The minimal length of poly(dT) required for CpRPA2 binding is 17 nucleotides, and the DNA-binding capability was inhibited by phosphorylation in vitro. These observations provide additional evidence on the divergence of RPA proteins between C. parvum and host, implying that the parasite DNA replication machinery could be explored as a chemotherapeutic target.
-
-
-
Differential expression and interaction of transcription co-activator MBF1 with TATA-binding protein (TBP) in the apicomplexan Cryptosporidium parvum
More LessAll gene-specific transcriptional activators initiate gene transcriptions by binding to promoter sequences and recruiting general transcription factors including TATA-binding protein (TBP) to upstream of targeted genes. Some of them require multiprotein bridging factors (MBFs); for example, the type 1 MBF (MBF1) which interconnects the gene activator with TBP. In this study, the properties of a previously cloned type 1 multiprotein bridging factor (CpMBF1) and a newly identified TBP (CpTBP1) from the apicomplexan Cryptosporidium parvum were investigated. Genes encoding both proteins were differentially expressed as determined by semi-quantitative RT-PCRs during the parasite life cycle, but in different patterns. The highest level of expression of CpMBF1 was in the well-developed intracellular parasites, whereas that of CpTBP1 was found in intact oocysts and late intracellular stages, possibly correlated with the formation of oocysts. Both CpMBF1 and CpTBP1 were expressed as maltose-binding protein fusion proteins. The function of CpTBP1 was confirmed by its ability to bind a biotinylated DNA oligonucleotide containing TATA consensus sequence. The interaction between CpMBF1 and CpTBP1 was also observed by an electrophoretic mobility shift assay. Since little is known about the regulation and control of gene activity in C. parvum, this study may point to a new direction for the study of gene activation associated with the development of the complex life cycle of this parasite.
-
-
-
Polyamine metabolism in a member of the phylum Microspora (Encephalitozoon cuniculi): effects of polyamine analogues
The uptake, biosynthesis and catabolism of polyamines in the microsporidian parasite Encephalitozoon cuniculi are detailed with reference to the effects of oligoamine and arylamine analogues of polyamines. Enc. cuniculi, an intracellular parasite of mammalian cells, has both biosynthetic and catabolic enzymes of polyamine metabolism, as demonstrated in cell-free extracts of mature spores. The uptake of polyamines was measured in immature, pre-emergent spores isolated from host cells by Percoll gradient. Spermine was rapidly taken up and metabolized to spermidine and an unknown, possibly acetamidopropanal, by spermidine/spermine N 1-acetyltransferase (SSAT) and polyamine oxidase (PAO). Most of the spermidine and the unknown product were found in the cell incubation medium, indicating they were released from the cell. bis(Ethyl) oligoamine analogues of polyamines, such as SL-11144 and SL-11158, as well as arylamine analogues [BW-1, a bis(phenylbenzyl) 3-7-3 analogue] blocked uptake and interconversion of spermine at micromolar levels and, in the case of BW-1, acted as substrate for PAO. The Enc. cuniculi PAO activity differed from that found in mammalian cells with respect to pH optimum, substrate specificity and sensitivity to known PAO inhibitors. SL-11158 inhibited SSAT activity with a mixed type of inhibition in which the analogue had a 70-fold higher affinity for the enzyme than the natural substrate, spermine. The interest in Enc. cuniculi polyamine metabolism and the biochemical effects of these polyamine analogues is warranted since they cure model infections of Enc. cuniculi in mice and are potential candidates for human clinical trials.
-
-
-
Amino sugar phosphate levels in Giardia change during cyst wall formation
More LessThe parasite Giardia intestinalis exists as a trophozoite (vegetative) that infects the human small intestine, and a cyst (infective) that is shed in host faeces. Cyst viability in the environment depends upon a protective cyst wall, which consists of proteins and a unique β(1-3) GalNAc homopolymer. UDP-GalNAc, the precursor for this polysaccharide, is synthesized from glucose by an enzyme pathway that involves amino sugar phosphate intermediates. Using a novel method of microanalysis by capillary electrophoresis, the levels of amino sugar phosphate intermediates in trophozoites before encystment, during a period of active encystment and after the peak of encystment were measured. These levels were used to deduce metabolic control of amino sugar phosphates associated with encystment. Levels of amino sugar phosphate intermediates increased during encystment, and then decreased to nearly non-encysting levels. The most pronounced increase was in glucosamine 6-phosphate, which is the first substrate unique in this pathway, and which is the positive effector for the pathway's putative rate-controlling enzyme, UDP-GlcNAc pyrophosphorylase. Moreover, more UDP-GalNAc than UDP-GlcNAc, its direct precursor, was detected at 24 h. It is postulated that the enhanced UDP-GalNAc is a result of enhanced synthesis of UDP-GlcNAc by the pyrophosphorylase, and its preferential conversion to UDP-GalNAc. These results suggest that kinetics of amino sugar phosphate synthesis in encysting Giardia favours the direction that supports cyst wall synthesis. The enzymes involved in synthesis of UDP-GalNAc and its conversion to cyst wall might be potential targets for therapeutic inhibitors of Giardia infection.
-
-
-
Menadione kills trophozoites and cysts of Giardia intestinalis
Production of reactive oxygen species by redox cycling in the presence of low levels of oxygen has been studied as a possible approach to anti-protozoal chemotherapeutic strategy. Incubation of the diplomonad flagellate Giardia intestinalis with 2-methy-1,4-naphthoquinone (menadione), under anaerobic conditions, gave UV absorption changes characteristic of reduction to menadiol; partial reversal was observed on admitting O2. Under microaerobic conditions, similar to those on the surface of the jejunal mucosa, trophozoites consumed O2 rapidly in the presence of menadione; reaction products included singlet O2 (monitored by single photon counting of O2-dependent low-level chemiluminescence) and H2O2 (measured by the formation of Complex I of microperoxidase). Trophozoites became swollen and incapable of regulatory volume control; these irreversible responses led to loss of motility, cessation of flagellar activity and cell death. Comparison of the sensitivities of trophozoites to metronidazole and menadione gave LC50 values (μg ml−1) of 1·2 and 0·7, respectively; corresponding values for cysts (measured by in vitro excystation capacities) were >50 and 1·3. Menadione (LD50 in mice, 0·5 g kg−1) is therefore a potentially more useful and general anti-giardial agent than metronidazole, as it is active against cysts as well as trophozoites.
-
Volumes and issues
-
Volume 171 (2025)
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
Most Read This Month
![Loading](/images/jp/spinner.gif)