1887

Abstract

Acetolactate synthase catalyses the first common step in isoleucine and valine biosynthesis and is the target of several classes of inhibitors. The gene, encoding acetolactate synthase, was identified by complementation of a mutant. is highly resistant to the commercially available acetolactate synthase inhibitor, sulfometuron methyl (SM). Expression of in conferred SM resistance, indicating that the SM resistance of is due, at least in part, to Ilv2p. The gene was disrupted. The mutants were auxotrophic for isoleucine and valine and the auxotrophy was satisfied by these amino acids only when proline, and not ammonium, was the nitrogen source, indicating nitrogen regulation of amino acid transport. mutants rapidly lost viability at 37 °C and when starved for isoleucine and valine. Consistent with these phenotypes, an mutant was avirulent and unable to survive in mice. Because Ilv2p is required for virulence and survival , inhibitors of branched-chain amino acid biosynthesis may make valuable antifungal agents.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26928-0
2004-05-01
2020-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/5/mic1501547.html?itemId=/content/journal/micro/10.1099/mic.0.26928-0&mimeType=html&fmt=ahah

References

  1. Becker J. M., Naider F.. 1977; Peptide transport in yeast: uptake of radioactive trimethionine in Saccharomyces cerevisiae. Arch Biochem Biophys178:245–255[CrossRef]
    [Google Scholar]
  2. Brandt M. E., Bragg S. L., Pinner R. W.. 1993; Multilocus enzyme typing of Cryptococcus neoformans. J Clin Microbiol31:2819–2823
    [Google Scholar]
  3. Bulmer G. S., Sans M. D., Gunn C. M.. 1967; Cryptococcus neoformans. I. Nonencapsulated mutants. J Bacteriol94:1475–1479
    [Google Scholar]
  4. Casadevall A., Perfect J. R.. 1998; Cryptococcus neoformans Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Chang Y. C., Kwon-Chung K. J.. 1994; Complementation of a capsule-deficient mutation of Cryptococcus neoformans restores its virulence. Mol Cell Biol14:4912–4919
    [Google Scholar]
  6. Chipman D., Barak Z., Schloss J. V.. 1998; Biosynthesis of 2-aceto-2-hydroxy acids: acetolactate synthases and acetohydroxyacid synthases. Biochim Biophys Acta 1385;401–419[CrossRef]
    [Google Scholar]
  7. Cox G. M., Mukherjee J., Cole G. T., Casadevall A., Perfect J. R.. 2000; Urease as a virulence factor in experimental cryptococcosis. Infect Immun68:443–448[CrossRef]
    [Google Scholar]
  8. Davidson R. C., Blankenship J. R., Kraus P. R., de Jesus Berrios M., Hull C. M., D'Souza C., Wang P., Heitman J.. 2002; A PCR-based strategy to generate integrative targeting alleles with large regions of homology. Microbiology148:2607–2615
    [Google Scholar]
  9. Duggleby R. G., Pang S. S., Yu H., Guddat L. W.. 2003; Systematic characterization of mutations in yeast acetohydroxyacid synthase. Interpretation of herbicide-resistance data. Eur J Biochem270:2895–2904[CrossRef]
    [Google Scholar]
  10. Falco S. C., Dumas K. S.. 1985; Genetic analysis of mutants of Saccharomyces cerevisiae resistant to the herbicide sulfometuron methyl. Genetics109:21–35
    [Google Scholar]
  11. Falco S. C., Dumas K. S., Livak K. J.. 1985; Nucleotide sequence of the yeast ILV2 gene which encodes acetolactate synthase. Nucleic Acids Res13:4011–4027[CrossRef]
    [Google Scholar]
  12. Falco S. C., McDevitt R. E., Chui C.-F., Hartnett M. E., Knowlton S., Mauvais C. J., Smith J. K., Mazur B. J.. 1989; Engineering herbicide-resistant acetolactate synthase. Dev Ind Microbiol30:187–194
    [Google Scholar]
  13. Fromtling R. A., Shadomy H. J., Jacobson E. S.. 1982; Decreased virulence in stable, acapsular mutants of Cryptococcus neoformans. Mycopathologia79:23–29[CrossRef]
    [Google Scholar]
  14. Gietz R. D., Schiestl R. H., Willems A. R., Woods R. A.. 1995; Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast11:355–360[CrossRef]
    [Google Scholar]
  15. Goldstein A. L., McCusker J. H.. 1999; Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast15:1541–1553[CrossRef]
    [Google Scholar]
  16. Goldstein A. L., McCusker J. H.. 2001; Development of Saccharomyces cerevisiae as a model pathogen. A system for the genetic identification of gene products required for survival in the mammalian host environment. Genetics159:499–513
    [Google Scholar]
  17. Grandoni J. A., Marta P. T., Schloss J. V.. 1998; Inhibitors of branched-chain amino acid biosynthesis as potential antituberculosis agents. J Antimicrob Chemother42:475–482[CrossRef]
    [Google Scholar]
  18. Heitman J., Allen B., Alspaugh J. A., Kwon-Chung K. J.. 1999; On the origins of congenic MATα and MATa strains of the pathogenic yeast Cryptococcus neoformans. Fungal Genet Biol28:1–5[CrossRef]
    [Google Scholar]
  19. Hoffman C. S., Winston F.. 1987; A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene57:265–272
    [Google Scholar]
  20. Kwon-Chung K. J., Bennett J. E.. 1992; Medical Mycology Philadelphia: Lea & Febiger;
  21. Kwon-Chung K. J., Rhodes J. C.. 1986; Encapsulation and melanin formation as indicators of virulence in Cryptococcus neoformans. Infect Immun51:218–223
    [Google Scholar]
  22. Kwon-Chung K. J., Edman J. C., Wickes B. L.. 1992; Genetic association of mating types and virulence in Cryptococcus neoformans. Infect Immun60:602–605
    [Google Scholar]
  23. LaRossa R. A., Schloss J. V.. 1984; The sulfonylurea herbicide sulfometuron methyl is an extremely potent and selective inhibitor of acetolactate synthase in Salmonella typhimurium. J Biol Chem259:8753–8757
    [Google Scholar]
  24. LaRossa R. A., Van Dyk T. K.. 1987; Metabolic mayhem caused by 2-ketoacid imbalances. Bioessays7:125–130[CrossRef]
    [Google Scholar]
  25. LaRossa R. A., Van Dyk T. K., Smulski D. R.. 1987; Toxic accumulation of α-ketobutyrate caused by inhibition of the branched-chain amino acid biosynthetic enzyme acetolactate synthase in Salmonella typhimurium. J Bacteriol169:1372–1378
    [Google Scholar]
  26. Logan D. A., Becker J. M., Naider F.. 1979; Peptide transport in Candida albicans. J Gen Microbiol114:179–186[CrossRef]
    [Google Scholar]
  27. Manning M., Snoddy C. B., Fromtling R. A.. 1984; Comparative pathogenicity of auxotrophic mutants of Candida albicans. Can J Microbiol30:31–35[CrossRef]
    [Google Scholar]
  28. McDade H. C., Cox G. M.. 2001; A new dominant selectable marker for use in Cryptococcus neoformans. Med Mycol39:151–154[CrossRef]
    [Google Scholar]
  29. Mitchell T. G., Perfect J. R.. 1995; Cryptococcosis in the era of AIDS – 100 years after the discovery of Cryptococcus neoformans. Clin Microbiol Rev8:515–548
    [Google Scholar]
  30. Namiki F., Matsunaga M., Okuda M., Inoue I., Nishi K., Fujita Y., Tsuge T.. 2001; Mutation of an arginine biosynthesis gene causes reduced pathogenicity in Fusarium oxysporum f. sp. melonis. Mol Plant–Microbe Interact14:580–584[CrossRef]
    [Google Scholar]
  31. Nisbet T. M., Payne J. W.. 1979; Peptide uptake in Saccharomyces cerevisiae: characteristics of transport system shared by dipeptides and tripeptides. J Gen Microbiol115:127–133[CrossRef]
    [Google Scholar]
  32. Odom A., Muir S., Lim E., Toffaletti D. L., Perfect J., Heitman J.. 1997; Calcineurin is required for virulence of Cryptococcus neoformans. EMBO J16:2576–2589[CrossRef]
    [Google Scholar]
  33. Pang S. S., Guddat L. W., Duggleby R. G.. 2003; Molecular basis of sulfonylurea herbicide inhibition of acetohydroxyacid synthase. J Biol Chem278:7639–7644[CrossRef]
    [Google Scholar]
  34. Payne J. W., Barrett-Bee K. J., Shallow D. A.. 1991; Peptide substrates rapidly modulate expression of dipeptide and oligopeptide permeases in Candida albicans. FEMS Microbiol Lett79:15–20[CrossRef]
    [Google Scholar]
  35. Perfect J. R., Toffaletti D. L., Rude T. H.. 1993; The gene encoding phosphoribosylaminoimidazole carboxylase (ADE2) is essential for growth of Cryptococcus neoformans in cerebrospinal fluid. Infect Immun61:4446–4451
    [Google Scholar]
  36. Salas S. D., Bennett J. E., Kwon-Chung K. J., Perfect J. R., Williamson P. R.. 1996; Effect of the laccase gene CNLAC1 on virulence of Cryptococcus neoformans. J Exp Med184:377–386[CrossRef]
    [Google Scholar]
  37. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  38. Schmeding K. A., Jong S. C., Hugh R.. 1981; Sexual compatibility between serotypes of Filobasidiella neoformans (Cryptococcus neoformans). Curr Microbiol5:133–138[CrossRef]
    [Google Scholar]
  39. Sherman F., Fink G. R., Lawrence C. W.. 1974; Methods in Yeast Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  40. Smith M., Jessee J., Landers T., Jordan J.. 1990; High efficiency bacterial electroporation: 1×1010 E. coli transformants/μg. Focus12:38–40
    [Google Scholar]
  41. Stetter J.. 1994; Herbicides Inhibiting Branched Chain Amino Acid Biosynthesis – Recent Developments Berlin & New York: Springer;
  42. Suvarna K., Bartiss A., Wong B.. 2000; Mannitol-1-phosphate dehydrogenase from Cryptococcus neoformans is a zinc-containing long-chain alcohol/polyol dehydrogenase. Microbiology146:2705–2713
    [Google Scholar]
  43. Toffaletti D. L., Rude T. H., Johnston S. A., Durack D. T., Perfect J. R.. 1993; Gene transfer in Cryptococcus neoformans by use of biolistic delivery of DNA. J Bacteriol175:1405–1411
    [Google Scholar]
  44. Torres-Guererro H., Edman J. C.. 1994; Melanin-deficient mutants of Cryptococcus neoformans. J Med Vet Mycol32:303–313[CrossRef]
    [Google Scholar]
  45. Van Dyk T. K., Smulski D. R., Chang Y. Y.. 1987; Pleiotropic effects of poxA regulatory mutations of Escherichia coli and Salmonella typhimurium, mutations conferring sulfometuron methyl and α-ketobutyrate hypersensitivity. J Bacteriol169:4540–4546
    [Google Scholar]
  46. Williamson P. R.. 1997; Laccase and melanin in the pathogenesis of Cryptococcus neoformans. Front Biosci2:e99–e107
    [Google Scholar]
  47. Xie Q., Jimenez A.. 1996; Molecular cloning of a novel allele of SMR1 which determines sulfometuron methyl resistance in Saccharomyces cerevisiae. FEMS Microbiol Lett137:165–168[CrossRef]
    [Google Scholar]
  48. Yang Z., Pascon R. C., Alspaugh A., Cox G. M., McCusker J. H.. 2002; Molecular and genetic analysis of the Cryptococcus neoformans MET3 gene and a met3 mutant. Microbiology148:2617–2625
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26928-0
Loading
/content/journal/micro/10.1099/mic.0.26928-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error