1887

Abstract

, a Gram-negative bacterium belonging to the clade of the family , forms a mutualistic association with the soil nematode . The nematode invades insects and releases into the haemolymph, where it participates in insect killing. To begin to understand the role of fimbriae in the unique life cycle of , the organization and expression of the fimbrial operon was analysed. The operon contained only five structural genes (), making it one of the smallest chaperone-usher fimbrial operons studied to date. Unlike the operon of , a site-specific recombinase was not linked to the operon. The intergenic region between the major fimbrial gene () and the usher gene () lacked a -like gene, but contained three tandem inverted repeat sequences located downstream of . A 940 nt -containing mRNA was the major transcript produced in cells growing on agar, while an polycistronic mRNA was produced at low levels. A canonical promoter, identified upstream of , was not subject to promoter inversion. Fimbriae were not produced in an -mutant strain, suggesting that the leucine-responsive regulatory protein, Lrp, plays a role in the regulation of the operon. These findings show that the genetic organization and regulation of the operon is in several respects distinct from other chaperone-usher fimbrial operons.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26853-0
2004-05-01
2020-04-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/5/mic1501439.html?itemId=/content/journal/micro/10.1099/mic.0.26853-0&mimeType=html&fmt=ahah

References

  1. Alexeyev M. F.. 1999; The pKNOCK series of broad-host-range mobilizable suicide vectors for gene knockout and targeted DNA insertion into the chromosome of gram-negative bacteria. Biotechniques26:824–828
    [Google Scholar]
  2. Bäga M., Norgren M., Normark S.. 1987; Biogenesis of E. coli Pap pili: PapH, a minor pilin subunit involved in cell anchoring and length modulation. Cell49:241–251[CrossRef]
    [Google Scholar]
  3. Bäga M., Göransson M., Normark S., Uhlin B. E.. 1988; Processed mRNA with differential stability in the regulation of E. coli pilin gene expression. Cell52:197–206[CrossRef]
    [Google Scholar]
  4. Bailey T., Elkan C.. 1994; Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology pp.28–36 Menlo Park, California: AAAI Press;
  5. Binnington K. C., Brooks L.. 1993; Fimbrial attachment of Xenorhabdus nematophilus to the intestine of Steinernema carpocapsae. In Nematodes and the Biological Control of Insect Pests pp.147–155Edited by Bedding R.. Akhurst R., Kaya H.. Melbourne, Australia: CSIRO Publications;
    [Google Scholar]
  6. Blomfield I. C.. 2001; The regulation of Pap and type 1 fimbriation in Escherichia coli. Adv Microb Physiol45:1–49
    [Google Scholar]
  7. Connell H., Agace W., Klemm P., Schembri M., Mårild S., Svanborg C.. 1996; Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc Natl Acad Sci U S A93:9827–9832[CrossRef]
    [Google Scholar]
  8. Forst S., Nealson K.. 1996; Molecular biology of the symbiotic-pathogenic bacteria Xenorhabdus spp. and Photorhabdus spp. Microbiol Rev60:21–43
    [Google Scholar]
  9. Forst S., Boylan B.. 2002; Characterization of the pleiotropic phenotype of an ompR strain of Xenorhabdus nematophila. Antonie van Leeuwenhoek81:43–49[CrossRef]
    [Google Scholar]
  10. Forst S., Clarke D.. 2002; Bacteria-nematodes symbiosis. In Entomopathogenic Nematology pp.57–77 Edited by Gaugler R.. London: CABI Publishing;
    [Google Scholar]
  11. Forst S., Dowds B., Boemare N., Stackebrandt E.. 1997; Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu Rev Microbiol51:47–72[CrossRef]
    [Google Scholar]
  12. Gally D. L., Bogan J. A., Eisenstein B. I., Blomfield I. C.. 1993; Environmental regulation of the fim switch controlling type 1 fimbrial phase variation inEscherichia coli K-12: effects of temperature and media. J Bacteriol175:6186–6193
    [Google Scholar]
  13. Girardeau J. P., Bertin Y., Callebaut I.. 2000; Conserved structural features in Class I major fimbrial subunits (pilin) in gram-negative bacteria. Molecular basis of classification in seven subfamilies and identification of intrasubfamily sequence signature motifs which might be implicated in quaternary structure. J Mol Evol50:424–442
    [Google Scholar]
  14. Hacker J., Morschhäuser J.. 1994; S and F1C fimbriae. In Fimbriae: Adhesion, Genetics, Biogenesis and Vaccines pp.27–36Edited by Klemm P.. Boca Raton, FL: CRC Press;
    [Google Scholar]
  15. He H.. 2002; Functional analysis of the mannose resistant fimbrial operon, mrx, in Xenorhabdus nematophila PhD thesis, University of Wisconsin-Milwaukee;
  16. Hernday A., Krabbe M., Braaten B., Low D.. 2002; Self-perpetuating epigenic pili switches in bacteria. Proc Natl Acad Sci U S A99:16470–16476[CrossRef]
    [Google Scholar]
  17. Heungens K., Cowles C. E., Goodrich-Blair H.. 2002; Identification of Xenorhabdus nematophila genes required for mutualistic colonization of Steinernema carpocapsae nematodes. Mol Microbiol45:1337–1353[CrossRef]
    [Google Scholar]
  18. Kim D., Boylan B., George N., Forst S.. 2003; Inactivation of ompR promotes precocious swarming andflhDC expression in Xenorhabdus nematophila. J Bacteriol185:5290–5294[CrossRef]
    [Google Scholar]
  19. Li X., Mobley H. L. T.. 1998; MrpB functions as the terminator for the assembly of Proteus mirabilis mannose-resistant Proteus-like fimbriae. Infect Immun66:1759–1763
    [Google Scholar]
  20. Li X., Rasko D. A., Lockatell C. V., Johnson D. E., Mobley H. L. T.. 2001; Repression of bacterial motility by a novel fimbrial gene product. EMBO J20:4854–4862[CrossRef]
    [Google Scholar]
  21. Low D., Braaten B., Woude M. V. D.. 1996; Fimbriae. In Escherichia coli and Salmonella: Cellular and Molecular Biology pp146–157Edited by Frederick C. N.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  22. Meslet-Cladiere L. M., Pimenta A., Duchaud E., Holland I. B., Blight M. A.. 2004; In vivo expression of mannose-resistant fimbriae of Photorhabdus temperata K122 during insect infection. J Bacteriol186:611–622[CrossRef]
    [Google Scholar]
  23. Mol O., Oudega B.. 1996; Molecular and structural aspects of fimbriae biosynthesis and assembly in Escherichia coli. FEMS Microbiol Rev19:25–52[CrossRef]
    [Google Scholar]
  24. Moureaux N., Karjalainen T., Givaudan A., Bourlioux P., Boemare N.. 1995; Biochemical characterization and agglutinating properties of Xenorhabdus nematophilus F1 fimbriae. Appl Environ Microbiol61:2707–2712
    [Google Scholar]
  25. Old D. C., Duguid J. P.. 1970; Selective outgrowth of fimbriate bacteria in static liquid medium. J Bacteriol103:447–456
    [Google Scholar]
  26. Otto K., Silhavy T.. 2002; Surface sensing and adhesion of Escherichia coli controlled by the Cpx-signaling pathway. Proc Natl Acad Sci U S A99:2287–2292[CrossRef]
    [Google Scholar]
  27. Prigent-Combaret C., Brombacher E., Vidal O., Ambert A., Lejeune P., Landini P., Dorel C.. 2001; Complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of the csgD gene. J Bacteriol183:7213–7223[CrossRef]
    [Google Scholar]
  28. Römling U., Bian Z., Hammer M., Sierralta W. D., Normark S.. 1998; Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. J Bacteriol180:722–731
    [Google Scholar]
  29. Soto G. E., Hultgren S. J.. 1999; Bacterial adhesins: common themes and variations in architecture and assembly. J Bacteriol181:1059–1071
    [Google Scholar]
  30. Stabb E. V., Ruby E. G.. 2003; Contribution of pilA to competitive colonization of the squidEuprymna scolopes by Vibrio fischeri. Appl Environ Microbiol69:820–826[CrossRef]
    [Google Scholar]
  31. Stentebjerg-Olesen B., Chakraborty T., Klemm P.. 1999; Type 1 fimbriation and phase switching in a natural Escherichia coli fimB null strain, Nissle 1917. J Bacteriol181:7470–7478
    [Google Scholar]
  32. Tinker J. K., Hancox L. S., Clegg S.. 2001; FimW is a negative regulator affecting type 1 fimbrial expression in Salmonella enterica serovar typhimurium. J Bacteriol183:435–442[CrossRef]
    [Google Scholar]
  33. Tullus K., Kuhn I., Orskov I., Orskov F., Mollby R.. 1992; The importance of P and type 1 fimbriae for the persistence of Escherichia coli in the human gut. Epidemiol Infect108:415–421[CrossRef]
    [Google Scholar]
  34. Vivas E. I., Goodrich-Blair H.. 2001; Xenorhabdus nematophilus as a model for host-bacterium interactions: rpoS is necessary for mutualism with nematodes. J Bacteriol183:4687–4693[CrossRef]
    [Google Scholar]
  35. Webster J. M., Chen G., Hu K., Li J.. 2002; Bacterial metabolites. In Entomopathogenic Nematology pp.99–114Edited by Gaugler R.. London: CABI Publishing;
    [Google Scholar]
  36. Zhao H., Li X., Johnson D. E., Blomfield I., Mobley H. L. T.. 1997; In vivo phase variation of MR/P fimbrial gene expression in Proteus mirabilis infecting the urinary tract. Mol Microbiol23:1009–1019[CrossRef]
    [Google Scholar]
  37. Zhou X., Kaya H., Heungens K., Goodrich-Blair H.. 2002; Response of ants to a deterrent factor(s) produced by the symbiotic bacteria of entomopathogenic nematodes. Appl Environ Microbiol68:6202–6209[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26853-0
Loading
/content/journal/micro/10.1099/mic.0.26853-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error