1887

Abstract

Application of physico-chemical models to describe bacterial adhesion to surfaces has hitherto only been partly successful due to the structural and chemical heterogeneities of bacterial surfaces, which remain largely unaccounted for in macroscopic physico-chemical characterizations of the cell surfaces. In this study, the authors attempted to correlate microscopic adhesion of a collection of nine strains to the negatively charged, hydrophilic silicon nitride tip of an atomic force microscope (AFM) with macroscopic adhesion of the strains to a negatively charged, hydrophilic glass in a parallel-plate flow chamber. The repulsive force probed by AFM upon approach of the tip to a bacterial cell surface ranged from 1·7 to 7·7 nN depending on the strain considered and was found to correspond to an activation barrier, governing initial, macroscopic adhesion of the organisms to the glass surface. Moreover, maximum distances at which attractive forces were probed by the AFM upon retraction of the tip (120 to 1186 nm) were related to the area blocked by an adhering bacterium, i.e. the distance kept between adhering bacteria. Bacterial desorption could not be related to adhesive forces as probed by the AFM, possibly due to the distinct nature of the desorption process occurring in the parallel-plate flow chamber and the forced detachment in AFM.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26828-0
2004-04-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/4/mic1501015.html?itemId=/content/journal/micro/10.1099/mic.0.26828-0&mimeType=html&fmt=ahah

References

  1. Absolom, D. R., Lamberti, F. V., Policova, Z., Zing, W., Van Oss, C. J. & Neumann, A. W. ( 1983; ). Surface thermodynamics of bacterial adhesion. Appl Environ Microbiol 46, 90–97.
    [Google Scholar]
  2. Alexander, S. ( 1977; ). Adsorption of chain molecules with a polar head. A scaling description. J Phys II 38, 983–987.[CrossRef]
    [Google Scholar]
  3. An, Y. H. & Friedman, R. J. ( 1997; ). Laboratory methods for studies of bacterial adhesion. J Microbiol Methods 30, 141–152.[CrossRef]
    [Google Scholar]
  4. Bolshakova, A. V., Kiselyovaa, O. I., Filonova, A. S., Frolova, O. Y., Lyubchenkoc, Y. L. & Yaminskya, I. V. ( 2001; ). Comparative studies of bacteria with an atomic force microscope operating in different modes. Ultramicroscopy 86, 121–128.[CrossRef]
    [Google Scholar]
  5. Bos, R., Van der Mei, H. C. & Busscher, H. J. ( 1999; ). Physico-chemistry of initial microbial adhesive interactions – its mechanisms and methods for study. FEMS Microbiol Rev 23, 179–230.
    [Google Scholar]
  6. Busscher, H. J. & Van der Mei, H. C. ( 1995; ). Use of flow chamber devices and image analysis methods to study microbial adhesion. Methods Enzymol 253, 455–477.
    [Google Scholar]
  7. Busscher, H. J., Weerkamp, A. H., Van der Mei, H. C., Van Pelt, A. W. J., De Jong, H. P. & Arends, J. ( 1984; ). Measurements of the surface free energy of bacterial cell surfaces and its relevance for adhesion. Appl Environ Microbiol 48, 980–983.
    [Google Scholar]
  8. Butt, H.-J., Kappl, M., Mueller, H. & Raiteri, R. ( 1999; ). Steric forces measured with the atomic force microscope at various temperatures. Langmuir 15, 2559–2565.[CrossRef]
    [Google Scholar]
  9. Camesano, T. A. & Logan, B. E. ( 2000; ). Probing bacterial electrosteric interactions using atomic force microscopy. Environ Sci Technol 34, 3354–3362.[CrossRef]
    [Google Scholar]
  10. Characklis, W. G. ( 1973; ). Attached microbial growths. I. Attachment and growth. Water Res 7, 1113–1127.[CrossRef]
    [Google Scholar]
  11. Cooksey, K. E. & Wigglesworth-Cooksey, B. ( 1995; ). Adhesion of bacteria and diatoms to surfaces in the sea: a review. Aquat Microb Ecol 9, 87–96.[CrossRef]
    [Google Scholar]
  12. Cowan, M. M., Van der Mei, H. C., Rouxhet, P. G. & Busscher, H. J. ( 1992; ). Physico-chemical and structural properties of the surfaces of Peptostreptococcus micros and Streptococcus mitis as compared to those of mutans streptococci, Streptococcus sanguis and Streptococcus salivarius. J Gen Microbiol 138, 2707–2714.[CrossRef]
    [Google Scholar]
  13. De Gennes, P. G. ( 1987; ). Polymers at an interface; a simplified view. Adv Colloid Interface Sci 27, 189–209.[CrossRef]
    [Google Scholar]
  14. Drummond, C. J. & Senden, T. J. ( 1994; ). Examination of the geometry of long-range tip–sample interaction in atomic force microscopy. Colloids Surf A: Physicochem Eng Aspects 87, 217–234.[CrossRef]
    [Google Scholar]
  15. Dufrêne, Y. F. ( 2000; ). Direct characterization of the physicochemical properties of fungal spores using functionalized AFM probes. Biophys J 78, 3286–3291.[CrossRef]
    [Google Scholar]
  16. Dufrêne, Y. F. ( 2002; ). Atomic force microscopy, a powerful tool in microbiology. J Bacteriol 184, 5205–5213.[CrossRef]
    [Google Scholar]
  17. Dufrêne, Y. F., Boonaert, C. J. P., Gerin, P. A., Asther, M. & Rouxhet, P. G. ( 1999; ). Direct probing of the surface ultrastructure and molecular interactions of dormant and germinating spores of Phanerochaete chrysosporium. J Bacteriol 181, 5350–5354.
    [Google Scholar]
  18. Fang, H. H. P., Chan, K.-Y. & Xu, L.-C. ( 2000; ). Quantification of bacterial adhesion forces using atomic force microscopy (AFM). J Microbiol Methods 40, 89–97.[CrossRef]
    [Google Scholar]
  19. Gannon, J. T., Manilal, V. B. & Alexander, M. ( 1991; ). Relationships between cell surface properties and transport of bacteria through soil. Appl Environ Microbiol 57, 190–193.
    [Google Scholar]
  20. Harkes, G., Feijen, J. & Dankert, J. ( 1991; ). Adhesion of Escherichia coli on to a series of poly(methacrylates) differing in charge and hydrophobicity. Biomaterials 12, 853–860.[CrossRef]
    [Google Scholar]
  21. Johnson, S. B., Drummond, C. J., Scales, P. J. & Nishimura, S. ( 1995; ). Comparison of techniques for measuring the electrical double layer properties of surfaces in aqueous solution: hexadecyltrimethylammonium bromide self-assembly. Langmuir 11, 2367–2375.[CrossRef]
    [Google Scholar]
  22. Marsh, P. & Martin, M. ( 1992; ). Oral Microbiology, 3rd edn. London: Chapman & Hall.
  23. Martin, M. J., Logan, B. E., Johnson, W. P., Jewett, D. G. & Arnold, R. G. ( 1996; ). Scaling bacterial filtration rates in different sized porous media. J Environ Eng 122, 407–415.[CrossRef]
    [Google Scholar]
  24. McClaine, J. W. & Ford, R. M. ( 2002; ). Characterizing the adhesion of motile and nonmotile Escherichia coli to a glass surface using a parallel-plate flow chamber. Biotechnol Bioeng 78, 179–189.[CrossRef]
    [Google Scholar]
  25. Ohshima, H. & Kondo, T. ( 1991; ). On the electrophoretic mobility of biological cells. Biophys Chem 39, 191–198.[CrossRef]
    [Google Scholar]
  26. Ong, Y. L., Razatos, A., Gerogiou, G. & Sharma, M. M. ( 1999; ). Adhesion between E. coli bacteria and biomaterial surfaces. Langmuir 15, 2719–2725.[CrossRef]
    [Google Scholar]
  27. Rijnaarts, H. H. M., Norde, W., Bouwer, E. J., Lyklema, J. & Zehnder, A. J. B. ( 1995; ). Reversibility and mechanism of bacterial adhesion. Colloids Surf B 4, 5–22.[CrossRef]
    [Google Scholar]
  28. Rijnaarts, H. H. M., Norde, W., Lyklema, J. & Zehnder, A. J. B. ( 1999; ). DLVO and steric contributions to bacterial deposition in media of different ionic strengths. Colloids Surf B 14, 179–185.[CrossRef]
    [Google Scholar]
  29. Sjollema, J., Van der Mei, H. C., Uyen, H. M. W. & Busscher, H. J. ( 1990; ). The influence of collector and bacterial cell surface properties on the deposition of oral streptococci in a parallel plate flow cell. Adh Sci Technol 4, 765–779.[CrossRef]
    [Google Scholar]
  30. Smit, G., Kijne, J. W. & Lugtenbert, B. J. J. ( 1986; ). Correlation between extracellular fibrils and attachment of Rhizobium leguminosarum to pea root hair tips. J Bacteriol 169, 4294–4301.
    [Google Scholar]
  31. Vadillo-Rodriguez, V., Busscher, H. J., Norde, W. & Van der Mei, H. C. ( 2002; ). Softness of the bacterial cell wall of Streptococcus mitis as probed my microelectrophoresis. Electrophoresis 23, 2007–2011.[CrossRef]
    [Google Scholar]
  32. Van der Mei, H. C., Meinders, J. M. & Busscher, H. J. ( 1994; ). The influence of ionic strength and pH on diffusion of micro-organisms with different structural surface features. Microbiology 140, 3413–3419.[CrossRef]
    [Google Scholar]
  33. Van der Mei, H. C., Busscher, H. J., Bos, R., De Vries, J., Boonaert, C. J. P. & Dufrêne, Y. F. ( 2000; ). Direct probing by atomic force microscopy of the cell surface softness of a fibrillated and nonfibrillated oral streptoccal strain. Biophys J 78, 2668–2674.[CrossRef]
    [Google Scholar]
  34. Van Oss, C. J. ( 1994; ). Interfacial Forces in Aqueous Media. New York: Marcel Dekker.
  35. Van Oss, C. J., Good, R. J. & Chaudhury, M. ( 1986; ). The role of Van der Waals forces and hydrogen bonds in hydrophobic interactions between biopolymers and low energy surfaces. J Colloid Interface Sci 111, 378–390.[CrossRef]
    [Google Scholar]
  36. Van Pelt, A. W., Weerkamp, A. H., Uyen, M. H., Busscher, H. J., De Jong, H. P. & Arends, J. ( 1985; ). Adhesion of Streptococcus sanguis CH3 to polymers with different surface free energies. Appl Environ Microbiol 49, 1270–1275.
    [Google Scholar]
  37. Visser, J. & Jeurnink, T. J. M. ( 1997; ). Fouling of heat exchangers in the dairy industry. Exp Therm Fluid Sci 14, 407–424.[CrossRef]
    [Google Scholar]
  38. Zita, A. & Hermansson, M. ( 1997; ). Effects of bacterial cell surface structures and hydrophobicity on attachment to activated sludge flocs. Appl Environ Microbiol 63, 1168–1170.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26828-0
Loading
/content/journal/micro/10.1099/mic.0.26828-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error