1887

Abstract

The genome contains four highly related genes which present significant similarity to genes encoding phospholipase C enzymes. Three of these genes, , and , are organized in tandem (locus ). The fourth gene, , is located in a different region. This study investigates variations in and genes in clinical isolates of , and ‘’. Genetic polymorphisms were examined by PCR, Southern blot hybridization, sequence analysis and RT-PCR. Seven isolates contain insertions of IS elements within , or . In 19 of 25  isolates examined, genomic deletions were identified, resulting in loss of parts of genes or complete genes from the and/or loci. Partial deletion was observed in one isolate. In each case, deletions were associated with the presence of a copy of the IS element and in all occurrences IS was transposed in the same orientation. A mechanism of deletion resulting from homologous recombination of two copies of IS was recognized in a group of genetically related isolates. Five isolates presented major polymorphisms in the and regions, along with loss of expression competence that affected all four genes. Phospholipase C is a well-known bacterial virulence factor. The precise role of phospholipase C in the pathogenicity of is unknown, but considering the potential importance that the genes may have in the virulence of the tubercle bacillus, the study of isolates cultured from patients with active tuberculosis bearing genetic variations affecting these genes may provide insights into the significance of phospholipase C enzymes for tuberculosis pathogenicity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26778-0
2004-04-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/4/mic1500967.html?itemId=/content/journal/micro/10.1099/mic.0.26778-0&mimeType=html&fmt=ahah

References

  1. Aranaz, A., Liebana, E., Gomez-Mampaso, E. & 8 other authors ( 1999; ). Mycobacterium tuberculosis subsp. caprae subsp. nov. a taxonomic study of a new member of the Mycobacterium tuberculosis complex isolated from goats in Spain. Int J Syst Bacteriol 49, 1263–1273.[CrossRef]
    [Google Scholar]
  2. Behr, M. A., Wilson, M. A., Gill, W. P., Salamon, H., Schoolnik, G. K., Rane, S. & Small, P. M. ( 1999; ). Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284, 1520–1523.[CrossRef]
    [Google Scholar]
  3. Berka, R. M., Gray, G. L. & Vasil, M. L. ( 1981; ). Studies of phospholipase C (heat labile hemolysin) in Pseudomonas aeruginosa. Infect Immun 34, 1071–1074.
    [Google Scholar]
  4. Bifani, P., Moghazeh, S., Shopsin, B., Driscoll, J., Ravikovitch, A. & Kreiswirth, B. N. ( 2000; ). Molecular characterization of Mycobacterium tuberculosis H37Rv/Ra variants: distinguishing the mycobacterial laboratory strain. J Clin Microbiol 38, 3200–3204.
    [Google Scholar]
  5. Brosch, R., Gordon, S. V., Billault, A., Garnier, T., Eiglmeier, K., Soravito, C., Barrel, B. G. & Cole, S. T. ( 1998; ). Use of a Mycobacterium tuberculosis H37Rv bacterial artificial chromosome library for genome mapping, sequencing, and comparative genomics. Infect Immun 66, 2221–2229.
    [Google Scholar]
  6. Brosch, R., Philipp, W. J., Stavropoulos, E., Colston, M. J., Cole, S. T. & Gordon, S. V. ( 1999; ). Genomic analysis reveals variation between Mycobacterium tuberculosis H37Rv and the attenuated M. tuberculosis H37Ra strain. Infect Immun 67, 5768–5774.
    [Google Scholar]
  7. Brosch, R., Gordon, S. V., Marmiesse, M. & 12 other authors ( 2002; ). A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A 99, 3684–3689.[CrossRef]
    [Google Scholar]
  8. Cole, S. T., Brosch, R., Parkhill, J. & 39 other authors ( 1998; ). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544.[CrossRef]
    [Google Scholar]
  9. Cousins, D., Bastida, R., Cataldi, A. & 9 other authors ( 2003; ). Tuberculosis in seals caused by a novel member of the Mycobacterium tuberculosis complex: Mycobacterium pinnipedii sp. nov. Int J Syst Evol Microbiol 53, 1305–1314.[CrossRef]
    [Google Scholar]
  10. De Boer, A. S., Borgdorff, M. W., de Haas, P. E. W., Nagelkerke, N. J. D., van Embden, J. D. A. & van Soolingen, D. ( 1999; ). Analysis of rate of change of IS6110 RFLP patterns of Mycobacterium tuberculosis based on serial isolates. J Infect Dis 180, 1238–1244.[CrossRef]
    [Google Scholar]
  11. Del Portillo, P., Murillo, L. A. & Patarroyo, M. E. ( 1991; ). Amplification of a species-specific DNA fragment Mycobacterium tuberculosis and its possible use in diagnosis. J Clin Microbiol 29, 2163–2168.
    [Google Scholar]
  12. Eisenach, K. D., Cave, M. D., Bates, J. H. & Crawford, J. T. ( 1990; ). Polymerase chain reaction amplification of a repetitive DNA sequence specific for Mycobacterium tuberculosis. J Infect Dis 161, 977–981.[CrossRef]
    [Google Scholar]
  13. Fang, Z., Doig, C., Kenna, D. T., Smittipat, N., Palittapongarnpim, P., Watt, B. & Forbes, K. J. ( 1999; ). IS6110-mediated deletions of wild-type chromosomes of Mycobacterium tuberculosis. J Bacteriol 181, 1014–1020.
    [Google Scholar]
  14. Gilmore, M. S., Cruz-Rodz, A. L., Leimeister-Wätcher, M., Kreft, J. & Goebel, W. ( 1989; ). A Bacillus cereus cytolytic determinant, cereolysin AB, which comprises the phospholipase C and sphingomyelinase genes: nucleotide sequence and genetic linkage. J Bacteriol 171, 744–753.
    [Google Scholar]
  15. Gordon, S. V., Brosch, R., Billault, A., Garnier, T., Eiglmeier, K. & Cole, S. T. ( 1999; ). Identification of variable regions in the genomes of tubercle bacilli using bacterial artificial chromosome arrays. Mol Microbiol 32, 643–655.[CrossRef]
    [Google Scholar]
  16. Graham, J. E. & Clark-Curtiss, J. E. ( 1999; ). Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). Proc Natl Acad Sci U S A 96, 11554–11559.[CrossRef]
    [Google Scholar]
  17. Ho, T. B., Robertson, B. D., Taylor, G. M., Shaw, R. J. & Young, D. B. ( 2000; ). Comparison of Mycobacterium tuberculosis genomes reveals frequent deletions in a 20 kb variable region in clinical isolates. Yeast 17, 272–282.
    [Google Scholar]
  18. Johansen, K. A., Gell, R. E. & Vasil, M. L. ( 1996; ). Biochemical and molecular analysis of phospholipase C and phospholipase D activity in mycobacteria. Infect Immun 64, 3259–3266.
    [Google Scholar]
  19. Lari, N., Rindi, L. & Garzelli, C. ( 2001; ). Identification of one insertion site of IS6110 in Mycobacterium tuberculosis H37Ra and analysis of the RvD2 deletion in M. tuberculosis clinical isolates. J Med Microbiol 50, 805–811.
    [Google Scholar]
  20. Leão, S. C., Rocha, C. L., Murillo, L. A., Parra, C. A. & Patarroyo, M. E. ( 1995; ). A species-specific nucleotide sequence of Mycobacterium tuberculosis encodes a protein that exhibits hemolytic activity when expressed in Escherichia coli. Infect Immun 63, 4301–4306.
    [Google Scholar]
  21. Liébana, E., Aranaz, A., Francis, B. & Cousins, D. ( 1996; ). Assessment of genetic markers for species differentiation within the Mycobacterium tuberculosis complex. J Clin Microbiol 34, 933–938.
    [Google Scholar]
  22. Logan, A. J., Williamson, E. D., Titball, R. W., Percival, D. A., Shuttleworth, A. D., Conlan, J. W. & Kelly, D. C. ( 1991; ). Epitope mapping of the alpha-toxin of Clostridium perfringens. Infect Immun 59, 4338–4342.
    [Google Scholar]
  23. Maas, R. ( 1983; ). An improved colony hybridization method with significantly increased sensitivity for detection of single genes. Plasmid 10, 296–298.[CrossRef]
    [Google Scholar]
  24. Mahairas, G. G., Sabo, P. J., Hickey, M. J., Singh, D. C. & Stover, C. K. ( 1996; ). Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol 178, 1274–1282.
    [Google Scholar]
  25. Matsui, T., Carneiro, C. R. W. & Leão, S. C. ( 2000; ). Evidence for the expression of native Mycobacterium tuberculosis phospholipase C: recognition by immune sera and detection of promoter activity. Braz J Med Biol Res 33, 1275–1282.[CrossRef]
    [Google Scholar]
  26. Niemann, S., Richter, E. & Rusch-Gerdes, S. ( 2002; ). Biochemical and genetic evidence for the transfer of Mycobacterium tuberculosis subsp. caprae Aranaz et al., 1999 to the species Mycobacterium bovis Karlson and Lessel 1970 (approved lists 1980) as Mycobacterium bovis subsp. caprae comb. nov. Int J Syst Evol Microbiol 52, 433–436.
    [Google Scholar]
  27. Ostroff, R. M., Vasil, A. I. & Vasil, M. C. ( 1990; ). Molecular comparison of a nonhemolytic and a hemolytic phospholipase C from Pseudomonas aeruginosa. J Bacteriol 172, 5915–5923.
    [Google Scholar]
  28. Parra, C. A., Lodoño, L. P., Del Portillo, P. & Patarroyo, M. E. ( 1991; ). Isolation, characterization, and molecular cloning of a specific Mycobacterium tuberculosis antigen gene. Infect Immun 59, 3411–3417.
    [Google Scholar]
  29. Parsons, L. M., Brosch, R., Cole, S. T. & 6 other authors ( 2002; ). Rapid and simple approach for identification of Mycobacterium tuberculosis complex isolates by PCR-based genomic deletion analysis. J Clin Microbiol 40, 2339–2345.[CrossRef]
    [Google Scholar]
  30. Pfyffer, G. E., Auckenthaler, R., van Embden, J. D. & van Soolingen, D. ( 1998; ). Mycobacterium canettii, the smooth variant of M. tuberculosis, isolated from a Swiss patient exposed in Africa. Emerg Infect Dis 4, 631–634.[CrossRef]
    [Google Scholar]
  31. Philipp, W. J., Poulet, S., Eiglmeier, K. & 7 other authors ( 1996; ). An integrated map of the genome of the tubercle bacillus, Mycobacterium tuberculosis H37Rv, and comparison with Mycobacterium leprae. Proc Natl Acad Sci U S A 93, 3132–3137.[CrossRef]
    [Google Scholar]
  32. Raynaud, C., Guilhot, C., Rauzier, J., Bordat, Y., Pelicic, V., Manganelli, R., Smith, I., Gicquel, B. & Jackson, M. ( 2002; ). Phospholipases C are involved in the virulence of Mycobacterium tuberculosis. Mol Microbiol 45, 203–217.[CrossRef]
    [Google Scholar]
  33. Sampson, S. L., Warren, R. M., Richardson, M., van der Spuy, G. D. & van Helden, P. D. ( 1999; ). Disruption of coding regions by IS6110 insertion in Mycobacterium tuberculosis. Tuber Lung Dis 79, 349–359.[CrossRef]
    [Google Scholar]
  34. Sampson, S., Warren, R., Richardson, M., van der Spuy, G. D. & van Helden, P. D. ( 2001; ). IS6110 insertions in Mycobacterium tuberculosis: predominantly into coding regions. J Clin Microbiol 39, 3423–3424.[CrossRef]
    [Google Scholar]
  35. Sampson, S., Warren, R., Richardson, M., Victor, T. C., Jordaan, A. M., van der Spuy, G. D. & van Helden, P. D. ( 2003; ). IS6110-mediated deletion polymorphism in the direct repeat region of clinical isolates of Mycobacterium tuberculosis. J Bacteriol 185, 2856–2866.[CrossRef]
    [Google Scholar]
  36. Smith, D. A., Parish, T., Smith, S. M., Dockrell, H. M., Stoker, N. G. & Bancroft, G. J. ( 2002; ). Deletion of mycobacterial phospholipases C and haemolysin alters virulence and inhibits T cell recognition of Mycobacterium tuberculosis H37Rv. In Fifth International Conference on the Pathogenesis of Mycobacterial Infections, Stockholm, Sweden, Abstract book, p. 11.
  37. Titball, R. W. ( 1993; ). Bacterial phospholipases C. Microbiol Rev 57, 347–366.
    [Google Scholar]
  38. van Embden, J. D., Cave, M. D., Crawford, J. T. & 8 other authors ( 1993; ). Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol 31, 406–409.
    [Google Scholar]
  39. van Soolingen, D., van der Zanden, A. G., de Haas, P. E. & 7 other authors ( 1998; ). Diagnosis of Mycobacterium microti infections among humans by using novel genetic markers. J Clin Microbiol 36, 1840–1845.
    [Google Scholar]
  40. Vasquez-Boland, J.-A., Kocks, C., Dramsi, S., Ohayon, H., Geoffroy, C., Mengaud, J. & Cossart, P. ( 1992; ). Nucleotide sequence of the lecithinase operon of Listeria monocytogenes and possible role of lecithinase in cell-to-cell spread. Infect Immun 60, 219–230.
    [Google Scholar]
  41. Vera-Cabrera, L., Hoard, S. T., Laszlo, A. & Johnson, W. M. ( 1997; ). Analysis of genetic polymorphism in the phospholipase region of Mycobacterium tuberculosis. J Clin Microbiol 35, 1190–1195.
    [Google Scholar]
  42. Vera-Cabrera, L., Hernandez-Vera, M. A., Welsh, O., Johnson, W. M. & Castro-Garza, J. ( 2001; ). Phospholipase region of Mycobacterium tuberculosis is a preferential locus for IS6110 transposition. J Clin Microbiol 39, 3499–3504.[CrossRef]
    [Google Scholar]
  43. Viana-Niero, C., Gutierrez, C., Sola, C., Filliol, I., Boulahbal, F., Vincent, V. & Rastogi, N. ( 2001; ). Genetic diversity of Mycobacterium africanum clinical isolates based on IS6110-restriction fragment length polymorphism analysis, spoligotyping, and variable number of tandem DNA repeats. J Clin Microbiol 39, 57–65.[CrossRef]
    [Google Scholar]
  44. Warren, R. M., Sampson, S. L., Richardson, M., van der Spuy, G. D., Lombard, C. J., Victor, T. C. & van Helden, P. D. ( 2000; ). Mapping of IS6110 flanking regions in clinical isolates of Mycobacterium tuberculosis demonstrates genome plasticity. Mol Microbiol 37, 1405–1416.[CrossRef]
    [Google Scholar]
  45. Weil, A., Plikaytis, B. B., Butler, W. R., Woodley, C. L. & Shinnick, T. M. ( 1996; ). The mtp40 gene is not present in all strains of Mycobacterium tuberculosis. J Clin Microbiol 34, 2309–2311.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26778-0
Loading
/content/journal/micro/10.1099/mic.0.26778-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error