1887

Abstract

Natural transformation, a mechanism that generates genetic diversity in , was studied in a novel liquid shake culturing system that allowed an approximately 10 000-fold increase in cell density. transformation frequency was analysed in this system under 10 %, 5·0 % and 0·7 % CO atmospheres. At 5·0 % and 10 % CO concentrations, when purified isogenic chromosomal DNA was used to assess competence, transformation frequency ranged from 10 to 10 at low cell concentrations and declined as cell density increased. Transformation frequency under a 0·7 % CO atmosphere was more stable, maintaining 10 levels at high cell densities, and was 10- to 100-fold higher than that under a 10 % CO atmosphere. Three of four strains tested under a 5·0 % CO atmosphere were naturally competent for isogenic DNA; competent strains demonstrated a lack of barriers to intraspecies genetic exchange by taking up and incorporating chromosomal DNA from multiple donors. showed a preference for its own DNA at the species level, and co-cultivation demonstrated that DNA transfer via natural transformation occurred between isogenic populations during short periods of exposure in liquid medium when cell density and presumably DNA concentrations were low. Transformation frequency during co-cultivation of isogenic populations was also influenced by CO concentration. Under a 0·7 % CO atmosphere, co-cultivation transformation frequency increased approximately 500-fold in a linear fashion with regard to cell density, and was 1000- to 10 000-fold higher during late-exponential-phase growth when compared to cultures grown under a 10 % CO atmosphere.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26531-0
2003-12-01
2020-08-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/12/mic1493603.html?itemId=/content/journal/micro/10.1099/mic.0.26531-0&mimeType=html&fmt=ahah

References

  1. Ahmed I. H., Manning G., Wassenaar T. M., Cawthraw S., Newell D. G.. 2002; Identification of genetic differences between two Campylobacter jejuni strains with different colonization potentials. Microbiology148:1203–1212
    [Google Scholar]
  2. Alm R. A., Guerry P., Power M. E., Lior H., Trust T. J.. 1991; Analysis of the role of flagella in the heat-labile Lior serotyping scheme of thermophilic Campylobacters by mutant allele exchange. J Clin Microbiol29:2438–2445
    [Google Scholar]
  3. Alm R. A., Guerry P., Trust T. J.. 1993; Significance of duplicated flagellin genes in Campylobacter . J Mol Biol230:359–363
    [Google Scholar]
  4. Altkreuse S. F., Stern N. J., Fields P. I., Swerdlow D. L.. 1999; Campylobacter jejuni – an emerging foodborne pathogen. Emerg Infect Dis5:28–35
    [Google Scholar]
  5. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. 1997; Current Protocols in Molecular Biology New York: Wiley;
  6. Bacon D. J., Alm R. A., Burr D. H., Hu L., Kopecko D. J., Ewing C. P., Trust T. J., Guerry P.. 2000; Involvement of a plasmid in virulence of Campylobacter jejuni 81-176. Infect Immun68:4384–4390
    [Google Scholar]
  7. Bacon D. J., Alm R. A., Hu L., Hickey T. E., Ewing C. P., Batchelor R. A., Trust T. J., Guerry P.. 2002; DNA sequence and mutational analyses of the pVir plasmid of Campylobacter jejuni 81-176. Infect Immun70:6242–6250
    [Google Scholar]
  8. de Boer P., Wagenaar J. A., Achterberg R. P., van Putten J. P. M., Schouls L. M., Duim B.. 2002; Generation of Campylobacter jejuni genetic diversity in vivo . Mol Microbiol44:351–359
    [Google Scholar]
  9. Dingle K. E., Colles F. M., Wareing D. R. A.. 7 other authors 2001; Multilocus sequence typing system for Campylobacter jejuni . J Clin Microbiol9:14–23
    [Google Scholar]
  10. Dingle K. E., Colles F. M., Ure R., Wagenaar J. A., Duim B., Bolton F. J., Fox A. J., Wareing D. R. A., Maiden M. C. J.. 2002; Molecular characterization of Campylobacter jejuni clones: a basis for epidemiologic investigation. Emerg Infect Dis8:949–955
    [Google Scholar]
  11. Dorrell N., Mangan J. A., Laing K. G.. 9 other authors 2001; Whole genome comparison of Campylobacter jejuni human isolates using a low-cost microarray reveals extensive genetic diversity. Genome Res11:1706–1715
    [Google Scholar]
  12. Dowson C. G., Hutchison A., Brannigan J. A., George R. C., Hansman D., Liñares J., Tomasz A., Smith J. M., Spratt B. G.. 1989; Horizontal transfer of penicillin-binding protein genes in penicillin-resistant clinical isolates of Streptococcus pneumoniae . Proc Natl Acad Sci U S A86:8842–8846
    [Google Scholar]
  13. Dubnau D.. 1999; DNA uptake in bacteria. Annu Rev Microbiol53:217–244
    [Google Scholar]
  14. Edmonds P., Hall B. M., Edwards W. R., Hartline K. M.. 1992; Presence of methylated adenine in GATC sequences in chromosomal DNAs from Campylobacter species. J Bacteriol174:8156–8157
    [Google Scholar]
  15. Engberg J., Aarestrup F. M., Taylor D. E., Gerner-Smidt P., Nachamkin I.. 2001; Quinolone and macrolide resistance in Campylobacter jejuni and C. coli : resistance mechanisms and trends in human isolates. Emerg Infect Dis7:24–34
    [Google Scholar]
  16. Friedman C. R., Neimann J., Wegener H. C., Tauxe R. V.. 2000; Epidemiology of Campylobacter jejuni infections in the United States and other industrialized nations. In Campylobacter pp121–138 Edited by Nachamkin I., Blaser M. J.. Washington, DC: American Society for Microbiology;
  17. Fry B. N., Feng S., Chen Y., Newell D. G., Coloe P. J., Korolik V.. 2000; The galE gene of Campylobacter jejuni is involved in lipopolysaccharide synthesis and virulence. Infect Immun68:2594–2601
    [Google Scholar]
  18. Ge Z., Hiratsuka K., Taylor D. E.. 1995; Nucleotide sequence and mutational analysis indicate that two Helicobacter pylori genes encode a P-type ATPase and a cation-binding protein associated with copper transport. Mol Microbiol15:97–106
    [Google Scholar]
  19. Gibbs C. P., Reimann B. Y., Schultz E., Kaufmann A., Haas R., Meyer T. F.. 1989; Reassortment of pilin genes in Neisseria gonorrhoeae occurs by two distinct mechanisms. Nature338:651–652
    [Google Scholar]
  20. Gibreel A., Sjögren E., Kaijser B., Wretlind B., Sköld O.. 1998; Rapid emergence of high-level resistance to quinolones in Campylobacter jejuni associated with mutational changes in gyr A and par C. Antimicrob Agents Chemother42:3276–3278
    [Google Scholar]
  21. Guerry P., Pope P. M., Burr D. H., Leifer J., Joseph S. W., Bourgeois A. L.. 1994a; Development and characterization of rec A mutants of Campylobacter jejuni for inclusion in attenuated vaccines. Infect Immun62:426–432
    [Google Scholar]
  22. Guerry P., Yao R., Alm R. A., Burr D. H., Trust T. J.. 1994b; Systems of experimental genetics for Campylobacter species. Methods Enzymol235:474–481
    [Google Scholar]
  23. Guerry P., Szymanski C. M., Prendergast M. M., Hickey T. E., Ewing C. P., Pattarini D. L., Moran A. P.. 2002; Phase variation of Campylobacter jejuni 81-176 lipooligosaccharide affects ganglioside mimicry and invasiveness in vitro. Infect Immun70:787–793
    [Google Scholar]
  24. Jacobs-Reitsma W.. 2000; Campylobacter in the food supply. In Campylobacter pp467–481 Edited by Nachamkin I., Blaser M. J. Washington, DC: American Society for Microbiology;
  25. Karlyshev A. V., Linton D., Gregson N. A., Lastovica A. J., Wren B. W.. 2000; Genetic and biochemical evidence of a Campylobacter jejuni capsular polysaccharide that accounts for Penner serotype specificity. Mol Microbiol35:529–541
    [Google Scholar]
  26. Karlyshev A. V., Linton D., Gregson N. A., Wren B. W.. 2002; A novel paralogous gene family involved in phase-variable flagella-mediated motility in Campylobacter jejuni . Microbiology148:473–480
    [Google Scholar]
  27. Kim N. W., Lombardi R., Bingham H., Hani E., Louie H., Ng D., Chan V. L.. 1993; Fine mapping of the three rRNA operons on the updated genomic map of Campylobacter jejuni TGH9011 (ATCC 43431). J Bacteriol175:7468–7470
    [Google Scholar]
  28. Labigne-Roussel A., Harel J., Tompkins L.. 1987; Gene transfer from Escherichia coli to Campylobacter species: development of shuttle vectors for genetic analysis of Campylobacter jejuni . J Bacteriol169:5320–5323
    [Google Scholar]
  29. Laible G., Spratt B. G., Hakenbeck R.. 1991; Interspecies recombinational events during the evolution of altered PBP 2x genes in penicillin-resistant clinical isolates of Streptococcus pneumoniae . Mol Microbiol5:1993–2002
    [Google Scholar]
  30. Lee L. H., Burg E. III, Baqar S., Bourgeois A. L., Burr D. H., Ewing C. P., Trust T. J., Guerry P.. 1999; Evaluation of a truncated recombinant flagellin subunit vaccine against Campylobacter jejuni . Infect Immun67:5799–5805
    [Google Scholar]
  31. Linton D., Gilbert M., Hitchen P. G., Dell A., Morris H. R., Wakarchuk W. W., Gregson N. A., Wren B. W.. 2000; Phase variation of a β -1,3-galactosyltransferase involved in generation of the ganglioside GM1-like lipo-oligosaccharide of Campylobacter jejuni . Mol Microbiol37:501–514
    [Google Scholar]
  32. Maniatis T., Fritsch E. F., Sambrook J.. 1989; Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  33. McDermott P. F., Bodeis S. M., English L. L., White D. G., Walker R. D., Zhao S., Simjee S., Wagner D. D.. 2002; Ciprofloxacin resistance in Campylobacter jejuni evolves rapidly in chickens treated with fluoroquinolones. J Infect Dis185:837–840
    [Google Scholar]
  34. Miller J. F., Dower W. J., Tompkins L. S.. 1988; High-voltage electroporation of bacteria: genetic transformation of Campylobacter jejuni with plasmid DNA. Proc Natl Acad Sci U S A85:856–860
    [Google Scholar]
  35. Nuijten P. J. M., Bartels C., Bleumink-Pluym N. M. C., Gaastra W., van der Zeijst B. A. M.. 1990; Size and physical map of the Campylobacter jejuni chromosome. Nucleic Acids Res18:6211–6214
    [Google Scholar]
  36. Nuijten P. J. M., van den Berg A. J. G., Formentini I., van der Zeijst B. A. M., Jacobs A. A. C.. 2000; DNA rearrangements in the flagellin locus of an fla A mutant of Campylobacter jejuni during colonization of chicken ceca. Infect Immun68:7137–7140
    [Google Scholar]
  37. Parkhill J., Wren B. W., Mungall K.. 18 other authors 2000; The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature403:665–668
    [Google Scholar]
  38. Smith K. E., Besser J. M., Hedburg C. W., Leano F. T., Bender J. B., Wicklund J. H., Johnson B. P., Moore K. A., Osterholm M. T.. 1999; Quinolone-resistant Campylobacter jejuni infections in Minnesota, 1992–1998. N Engl J Med340:1525–1532
    [Google Scholar]
  39. Solomon J. M., Grossman A. D.. 1996; Who's competent and when: regulation of natural genetic competence in bacteria. Trends Genet12:150–155
    [Google Scholar]
  40. Spratt B. G.. 1994; Resistance to antibiotics mediated by target alterations. Science264:388–393
    [Google Scholar]
  41. Spratt B. G., Bowler L. D., Zhang Q. Y., Zhou J., Smith J. M.. 1992; Role of interspecies transfer of chromosomal genes in the evolution of penicillin resistance in pathogenic and commensal Neisseria species. J Mol Evol34:115–125
    [Google Scholar]
  42. Steinmoen H., Knutsen E., Håvarstein L. S.. 2002; Induction of natural competence in Streptococcus pneumoniae triggers lysis and DNA release from a subfraction of the cell population. Proc Natl Acad Sci U S A99:7681–7686
    [Google Scholar]
  43. Suerbaum S., Lohrengel M., Sonnevend A., Ruberg F., Kist M.. 2001; Allelic diversity and recombination in Campylobacter jejuni . J Bacteriol183:2553–2559
    [Google Scholar]
  44. Trieu-Cuot P., Gerbaud G., Lambert T., Courvalin P.. 1985; In vivo transfer of genetic information between Gram-positive and Gram-negative bacteria. EMBO J4:3583–3587
    [Google Scholar]
  45. van Belkum A., Scherer S., van Alphen L., Verbrugh H.. 1998; Short-sequence DNA repeats in prokaryotic genomes. Microbiol Mol Biol Rev62:275–293
    [Google Scholar]
  46. Wang Y., Taylor D. E.. 1990a; Natural transformation in Campylobacter species. J Bacteriol172:949–955
    [Google Scholar]
  47. Wang Y., Taylor D. E.. 1990b; Chloramphenicol resistance in Campylobacter coli : nucleotide sequence, expression, and cloning vector construction. Gene94:23–28
    [Google Scholar]
  48. Wang Y., Huang W. M., Taylor D. E.. 1993; Cloning and nucleotide sequence of the Campylobacter jejuni gyr A gene and characterization of quinolone resistance mutations. Antimicrob Agents Chemother37:457–463
    [Google Scholar]
  49. Wassenaar T. M., Fry B. N., van der Zeijst B. A. M.. 1993; Genetic manipulation of Campylobacter : evaluation of natural transformation and electro-transformation. Gene 132:131–135
    [Google Scholar]
  50. Wassenaar T. M., Fry B. N., van der Zeijst B. A. M.. 1995; Variation of the flagellin gene locus of Campylobacter jejuni by recombination and horizontal gene transfer. Microbiology141:95–101
    [Google Scholar]
  51. Wassenaar T. M., Wagenaar J. A., Rigter A., Fearnley C., Newell D. G., Duim B.. 2002; Homonucleotide stretches in chromosomal DNA of Campylobacter jejuni display high frequency polymorphism as detected by direct PCR analysis. FEMS Microbiol Lett212:77–85
    [Google Scholar]
  52. Wilson D. L., Abner S. R., Newman T. C., Mansfield L. S., Linz J. E.. 2000; Identification of ciprofloxacin-resistant Campylobacter jejuni by use of a fluorogenic PCR assay. J Clin Microbiol38:3971–3978
    [Google Scholar]
  53. Zhang Y. X., Perry K., Vinci V. A., Powell K., Stemmer W. P. C., del Cardayré S. B.. 2002; Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature415:644–646
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26531-0
Loading
/content/journal/micro/10.1099/mic.0.26531-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error