1887

Abstract

A new group of transposable elements, which the authors have named cryptons, was detected in several pathogenic fungi, including the basidiomycete , and the ascomycetes and . These elements are unlike any previously described transposons. An archetypal member of the group, crypton , is 4 kb in length and is present at a low but variable copy number in a variety of strains. It displays interstrain variations in its insertion sites, suggesting recent mobility. The internal region contains a long gene, interrupted by several introns. The product of this gene contains a putative tyrosine recombinase near its middle, and a region similar in sequence to the DNA-binding domains of several fungal transcription factors near its C-terminus. The element contains no long repeat sequences, but is bordered by short direct repeats which may have been produced by its insertion into the host genome by recombination. Many of the structural features of crypton are conserved in the other known cryptons, suggesting that these elements represent the functional forms. The presence of cryptons in ascomycetes and basidiomycetes suggests that this is an ancient group of elements (>400 million years old). Sequence comparisons suggest that cryptons may be related to the DIRS1 and groups of tyrosine-recombinase-encoding retrotransposons.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26529-0
2003-11-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/11/mic1493099.html?itemId=/content/journal/micro/10.1099/mic.0.26529-0&mimeType=html&fmt=ahah

References

  1. Berbee, M. L. & Taylor, J. W. ( 1993; ). Dating the evolutionary radiations of the true fungi. Can J Bot 71, 1114–1127.[CrossRef]
    [Google Scholar]
  2. Bon, E., Casaregola, S., Blandin, G. & 8 other authors ( 2003; ). Molecular evolution of eukaryotic genomes: hemiascomycetous yeast spliceosomal introns. Nucleic Acids Res 31, 1121–1135.[CrossRef]
    [Google Scholar]
  3. Calvi, B. R., Hong, T. J., Findley, S. D. & Gelbart, W. M. ( 1991; ). Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: hobo, Activator, and Tam3. Cell 66, 465–471.[CrossRef]
    [Google Scholar]
  4. Cambareri, E. B., Jensen, B. C., Schabtach, E. & Selker, E. U. ( 1989; ). Repeat-induced G-C to A-T mutations in Neurospora. Science 244, 1571–1575.[CrossRef]
    [Google Scholar]
  5. Cambareri, E. B., Singer, M. J. & Selker, E. U. ( 1991; ). Recurrence of repeat-induced point mutation (RIP) in Neurospora crassa. Genetics 127, 699–710.
    [Google Scholar]
  6. Doak, T. G., Doerder, F. P., Jahn, C. L. & Herrick, G. ( 1994; ). A proposed superfamily of transposase genes: transposon-like elements in ciliated protozoa and a common “D35E” motif. Proc Natl Acad Sci U S A 91, 942–946.[CrossRef]
    [Google Scholar]
  7. Doak, T. G., Witherspoon, D. J., Jahn, C. L. & Herrick, G. ( 2003; ). Selection on the genes of Euplotes crassus Tec1 and Tec2 transposons: evolutionary appearance of a programmed frameshift in a Tec2 gene encoding a tyrosine family site-specific recombinase. Eukaryot Cell 2, 95–102.[CrossRef]
    [Google Scholar]
  8. Eickbush, T. H. & Malik, H. S. ( 2002; ). Origins and evolution of retrotransposons. In Mobile DNA II, pp 1111–1144. Edited by N. L. Craig, R. Craigie, M. Gellert & A. M. Lambowitz. Washington, DC: American Society for Microbiology.
  9. Esposito, D. & Scocca, J. J. ( 1997; ). The integrase family of tyrosine recombinases: evolution of a conserved active site domain. Nucleic Acids Res 25, 3605–3614.[CrossRef]
    [Google Scholar]
  10. Estruch, F. & Carlson, M. ( 1990; ). Increased dosage of the MSN1 gene restores invertase expression in yeast mutants defective in the SNF1 protein kinase. Nucleic Acids Res 18, 6959–6964.[CrossRef]
    [Google Scholar]
  11. Fayet, O., Ramond, P., Polard, P., Prere, M. F. & Chandler, M. ( 1990; ). Functional similarities between retroviruses and the IS3 family of bacterial insertion sequences? Mol Microbiol 4, 1771–1777.[CrossRef]
    [Google Scholar]
  12. Fisher, M. C., Koenig, G. L., White, T. J. & Taylor, J. W. ( 2002; ). Molecular and phenotypic description of Coccidioides posadasii sp. nov., previously recognized as the non-California population of Coccidioides immitis. Mycologia 94, 73–84.[CrossRef]
    [Google Scholar]
  13. Galtier, N., Gouy, M. & Gautier, C. ( 1996; ). SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12, 543–548.
    [Google Scholar]
  14. Goodwin, T. J. D. & Poulter, R. T. M. ( 2000; ). Multiple LTR-retrotransposon families in the asexual yeast Candida albicans. Genome Res 10, 174–191.[CrossRef]
    [Google Scholar]
  15. Goodwin, T. J. D. & Poulter, R. T. M. ( 2001a; ). The DIRS1 group of retrotransposons. Mol Biol Evol 18, 2067–2082.[CrossRef]
    [Google Scholar]
  16. Goodwin, T. J. D. & Poulter, R. T. M. ( 2001b; ). The diversity of retrotransposons in the yeast Cryptococcus neoformans. Yeast 18, 865–880.[CrossRef]
    [Google Scholar]
  17. Haw, R., Yarragudi, A. D. & Uemura, H. ( 2001; ). Isolation of GCR1, a major transcription factor of glycolytic genes in Saccharomyces cerevisiae, from Kluyveromyces lactis. Yeast 18, 729–735.[CrossRef]
    [Google Scholar]
  18. Heitman, J., Allen, B., Alspaugh, J. A. & Kwon-Chung, K. J. ( 1999; ). On the origins of congenic MATα and MATa strains of the pathogenic yeast Cryptococcus neoformans. Fungal Genet Biol 28, 1–5.[CrossRef]
    [Google Scholar]
  19. Holland, M. J., Yokoi, T., Holland, J. P., Myambo, K. & Innis, M. A. ( 1987; ). The GCR1 gene encodes a positive transcriptional regulator of the enolase and glyceraldehyde-3-phosphate dehydrogenase gene families in Saccharomyces cerevisiae. Mol Cell Biol 7, 813–820.
    [Google Scholar]
  20. Huie, M. A. & Baker, H. V. ( 1996; ). DNA-binding properties of the yeast transcriptional activator, Gcr1p. Yeast 12, 307–317.[CrossRef]
    [Google Scholar]
  21. Huie, M. A., Scott, E. W., Drazinic, C. M., Lopez, M. C., Hornstra, I. K., Yang, T. P. & Baker, H. V. ( 1992; ). Characterization of the DNA-binding activity of GCR1: in vivo evidence for two GCR1-binding sites in the upstream activating sequence of TP1 of Saccharomyces cerevisiae. Mol Cell Biol 12, 2690–2700.
    [Google Scholar]
  22. Hull, C. M. & Heitman, J. ( 2002; ). Genetics of Cryptococcus neoformans. Annu Rev Genet 36, 557–615.[CrossRef]
    [Google Scholar]
  23. Ikeda, R., Nishikawa, A., Shinoda, T. & Fukazawa, Y. ( 1985; ). Chemical characterization of capsular polysaccharide from Cryptococcus neoformans serotype A-D. Microbiol Immunol 29, 981–991.[CrossRef]
    [Google Scholar]
  24. Jacobs, M. E., Sanchez-Blanco, A., Katz, L. A. & Klobutcher, L. A. ( 2003; ). Tec3, a new developmentally eliminated DNA element in Euplotes crassus. Eukaryot Cell 2, 103–114.[CrossRef]
    [Google Scholar]
  25. Khan, E., Mack, J. P. G., Katz, R. A., Kulkosky, J. & Skalka, A. M. ( 1991; ). Retroviral integrase domains: DNA binding and the recognition of LTR sequences. Nucleic Acids Res 19, 851–860.[CrossRef]
    [Google Scholar]
  26. Kirkland, T. N. & Fierer, J. ( 1996; ). Coccidioidomycosis: a reemerging infectious disease. Emerg Infect Dis 2, 192–199.[CrossRef]
    [Google Scholar]
  27. Kulkosky, J., Jones, K. S., Katz, R. A., Mack, J. P. G. & Skalka, A. M. ( 1992; ). Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases. Mol Cell Biol 12, 2331–2338.
    [Google Scholar]
  28. Kwon-Chung, K. J. & Bennett, J. E. ( 1992; ). Medical Mycology. Philadelphia: Lea & Febiger.
  29. Kwon-Chung, K. J., Bennett, J. E. & Rhodes, J. C. ( 1982; ). Taxonomic studies on Filobasidiella species and their anamorphs. Antonie van Leeuwenhoek 48, 25–38.[CrossRef]
    [Google Scholar]
  30. Nunes-Duby, S. E., Joo Kwon, H., Tirumalai, R. S., Ellenberger, T. & Landy, A. ( 1998; ). Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res 26, 391–406.[CrossRef]
    [Google Scholar]
  31. Philippsen, P., Stotz, A. & Scherf, C. ( 1991; ). DNA of Saccharomyces cerevisiae. Methods Enzymol 194, 169–182.
    [Google Scholar]
  32. Rep, M., Reiser, V., Gartner, U., Thevelein, J. M., Hohmann, S., Ammerer, G. & Ruis, H. ( 1999; ). Osmotic stress-induced gene expression in Saccharomyces cerevisiae requires Msn1p and the novel nuclear factor Hot1p. Mol Cell Biol 19, 5474–5485.
    [Google Scholar]
  33. Storrs, M. J., Carlier, C., Poyart-Salmeron, C., Trieu-Cuot, P. & Courvalin, P. ( 1991; ). Conjugative transposition of Tn916 requires the excisive and integrative activities of the transposon-encoded integrase. J Bacteriol 173, 4347–4352.
    [Google Scholar]
  34. Swofford, D. L. ( 1998; ). PAUP*. Phylogenetic analysis using parsimony (* and other methods). Version 4. Sunderland: Sinauer.
  35. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougon, F. & Higgins, D. G. ( 1997; ). The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  36. Watters, M. K., Randall, T. A., Margolin, B. S., Selker, E. U. & Stadler, D. R. ( 1999; ). Action of repeat-induced point mutation on both strands of a duplex and on tandem duplications of various sizes in Neurospora. Genetics 153, 705–714.
    [Google Scholar]
  37. Woods, J. P. ( 2002; ). Histoplasma capsulatum molecular genetics, pathogenesis, and responsiveness to its environment. Fungal Genet Biol 35, 81–97.[CrossRef]
    [Google Scholar]
  38. Xu, J., Vilgalys, R. & Mitchell, T. G. ( 2000; ). Multiple gene genealogies reveal recent dispersion and hybridization in the human pathogenic fungus Cryptococcus neoformans. Mol Ecol 9, 1471–1481.[CrossRef]
    [Google Scholar]
  39. Yu, J., Hu, S., Wang, J. & 97 other authors ( 2002; ). A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79–92.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26529-0
Loading
/content/journal/micro/10.1099/mic.0.26529-0
Loading

Data & Media loading...

Supplements

Fig. S1shows a full-length alignment of crypton protein sequences and Fig. S2shows the alignment of tyrosine recombinase sequences used to generate the phylogenetic tree in Fig. 6.

PDF

Fig. S1shows a full-length alignment of crypton protein sequences and Fig. S2shows the alignment of tyrosine recombinase sequences used to generate the phylogenetic tree in Fig. 6.

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error