1887

Abstract

species are an important source of agar. The South African industry has experienced a number of setbacks over the last decade in the form of complete or partial die-offs of the agarophyte growing in Saldanha Bay, which may be attributed to bacterial infection. Since a positive correlation was observed between the presence of agarolytic epiphytes and bacterial pathogenicity, we investigated the role of an agarase in the virulence mechanism employed by a bacterium that elicits disease in . The recombinant plasmid pDA1, isolated from a B9 genomic library, was responsible for the agarolytic activity exhibited by transformants when grown on solid medium. A search of the GenBank database showed that an 873 bp ORF () located on pDA1 had 85 % identity to the -agarase () from ATCC 19262 (or IAM 12927) at the amino acid level. AagA was purified from the extracellular medium of an transformant harbouring pDA1 by using a combination of gel filtration and ion-exchange chromatography. AagA has an of 30 000 on SDS-PAGE. TLC of the digestion products of AagA showed that the enzyme cleaves the -(1,4) linkages of agarose to yield predominately neoagarotetraose. Western hybridization confirmed that the cloned agarase was in fact the extracellular -agarase of B9. The observed relationship between disease symptoms of and the agarolytic phenotype of B9 was confirmed. Transmission electron microscope examination of cross sections of both healthy and infected with , revealed a weakening of the cell structure in the latter plants. Immunogold-labelled antibodies localized the agarase to the cell walls of bleached . Thus, the weakening observed in the cell structure of infected with can be attributed to degradation of the mucilaginous component of the cell wall of the bleached thalli.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26513-0
2003-10-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/10/mic1492919.html?itemId=/content/journal/micro/10.1099/mic.0.26513-0&mimeType=html&fmt=ahah

References

  1. Akagawa-Matsushita, M., Matsuo, M., Koga, Y. & Yamasato, K. ( 1992; ). Alteromonas altantica sp. nov. and Alteromonas carrageenovora sp. nov., bacteria that decompose algal polysaccharides. Int J Syst Bacteriol 42, 621–627.[CrossRef]
    [Google Scholar]
  2. Altschul, S., Gish, W., Miller, W., Meyers, E. & Lipman, D. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  3. Anderson, R. J., Simons, R. H. & Jarman, N. G. ( 1989; ). Commercial seaweeds in Southern Africa: a review of utilisation and research. S Afr J Mar Sci 8, 277–289.[CrossRef]
    [Google Scholar]
  4. Anderson, R. J., Levitt, G. J., Dawes, C. P. & Simons, R. H. ( 1992; ). Experimental growth of Gracilaria in Saldanha Bay, South Africa. In Proceedings of the First International Workshop on Sustainable Seaweed Resource Development in Sub-Saharan Africa, pp. 19–36. Edited by K. E. Mshigeni, J. Bolton, A. Critshley & G. Kiangi. Windhoek, Namibia.
  5. Anderson, R. J., Smit, A. J. & Levitt, G. J. ( 1999; ). Upwelling and fish-factory waste as nitrogen sources for suspended cultivation of Gracilaria gracilis in Saldanha Bay, South Africa. Hydrobiologia 398/399, 455–462.[CrossRef]
    [Google Scholar]
  6. Aoki, T., Araki, T. & Kitamikado, M. ( 1990; ). Purification and characterization of a novel β-agarase from Vibrio sp. AP-2. Eur J Biochem 187, 461–465.[CrossRef]
    [Google Scholar]
  7. Araki, T., Hayakawa, H., Lu, Z., Karita, S. & Morishita, T. ( 1998; ). Purification and characterization of agarases from a marine bacterium, Vibrio sp. PO-303. J Mar Biotechnol 6, 260–265.
    [Google Scholar]
  8. Armisen, R. ( 1995; ). World-wide use and importance of Gracilaria. J Appl Phycol 7, 231–243.[CrossRef]
    [Google Scholar]
  9. Ausubel, S. F., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. (editors) ( 1989; ). Current Protocols in Molecular Biology. New York: Wiley.
  10. Beesley, J. E. ( 1989; ). Colloidal gold: a new perspective for cytochemical marking. In Royal Microscopical Society Microscopy Handbook 17, p. 48. Oxford: Oxford University Press.
  11. Belas, R., Bartlett, D. & Silverman, M. ( 1988; ). Cloning and gene replacement mutagenesis of a Pseudomonas atlantica agarase gene. Appl Environ Microbiol 54, 30–37.
    [Google Scholar]
  12. Bibb, M. J., Jones, G. H., Joseph, R., Buttner, M. J. & Ward, J. M. ( 1987; ). The agarase gene (dagA) of Streptomyces coelicolor A3(2) – affinity purification and characterization of the cloned gene product. J Gen Microbiol 133, 2089–2096.
    [Google Scholar]
  13. Buttner, M. J., Fearnley, I. M. & Bibb, M. J. ( 1987; ). The agarase gene (dagA) of Streptomyces coelicolor A3(2): nucleotide sequence and transcriptional analysis. Mol Gen Genet 209, 101–109.[CrossRef]
    [Google Scholar]
  14. Christiaen, D., Stadler, T., Ondarza, M. & Verdus, M. C. ( 1987; ). Structures and functions of the polysaccharides from the cell wall of Gracilaria verrucosa (Rhodophyceae, Gigartinales). Hydrobiologia 151/152, 139–146.[CrossRef]
    [Google Scholar]
  15. Dagert, M. & Ehrlich, S. D. ( 1979; ). Prolonged incubation in calcium chloride improves the competence of Escherichia coli. Gene 6, 23–28.[CrossRef]
    [Google Scholar]
  16. Day, D. F. & Yaphe, W. ( 1975; ). Enzymatic hydrolysis of agar: purification and characterization of neoagarobiose hydrolase and p-nitrophenyl α-galactoside hydrolase. Can J Microbiol 21, 1512–1518.[CrossRef]
    [Google Scholar]
  17. Duckworth, M. & Turvey, J. R. ( 1969; ). An extracellular agarase from a Cytophaga species. Biochem J 113, 139–142.
    [Google Scholar]
  18. Dykstra, M. J. ( 1993; ). A Manual of Applied Techniques for Biological Electron Microscopy. New York, London: Plenum Press.
  19. Englard, S. & Seifter, S. ( 1990; ). Precipitation techniques. Methods Enzymol 182, 285–300.
    [Google Scholar]
  20. Friedlander, M. & Gunkel, W. ( 1992; ). Factors leading to thallus disintegration and the control of these factors in Gracilaria sp. In Proceedings of the 4th German–Israeli Status Seminar, EAS Special Publication No. 17, Oostende, pp. 221–243. Edited by B. Moav, B. Hilge & H. Rosenthal.
  21. Fukasawa, S., Dunlap, P. V., Baba, M. & Osumi, M. ( 1987; ). Identification of an agar-digesting, luminous bacterium. Agric Biol Chem 51, 265–268.[CrossRef]
    [Google Scholar]
  22. Gauthier, G., Gauthier, M. & Christen, R. ( 1995; ). Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes encoding the small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int J Syst Bacteriol 45, 755–761.[CrossRef]
    [Google Scholar]
  23. Groleau, D. & Yaphe, W. ( 1977; ). Enzymatic hydrolysis of agar: purification and characterization of β-neoagarotetraose hydrolase from Pseudomonas atlantica. Can J Microbiol 23, 672–679.[CrossRef]
    [Google Scholar]
  24. Ha, J. C., Kim, G. T., Kim, S. K., Oh, T. K., Yu, J. H. & Kong, I. S. ( 1997; ). β-agarase from Pseudomonas sp. W7: purification of the recombinant enzyme from Escherichia coli and the effects of salt on its activity. Biotechnol Appl Biochem 26, 1–6.
    [Google Scholar]
  25. Hofsten, B. V. & Malmqvist, M. ( 1975; ). Degradation of agar by a Gram-negative bacterium. J Gen Microbiol 87, 150–158.[CrossRef]
    [Google Scholar]
  26. Jaffray, A. E. & Coyne, V. E. ( 1996; ). Development of an in situ assay to detect bacterial pathogens of the red alga Gracilaria gracilis (Stackhouse) Steentoft, Irvine et Farnham. J Appl Phycol 8, 409–414.[CrossRef]
    [Google Scholar]
  27. Jaffray, A. E., Anderson, R. J. & Coyne, V. E. ( 1997; ). Investigation of bacterial epiphytes of the agar-producing red seaweed Gracilaria gracilis (Stackhouse) Steentoft, Irvine et Farnham from Saldanha Bay, South Africa and Lüderitz, Namibia. Bot Mar 40, 569–576.
    [Google Scholar]
  28. Kendall, K. & Cullum, J. ( 1984; ). Cloning and expression of an extracellular-agarase gene from Streptomyces coelicolor A3(2) in Streptomyces lividans 66. Gene 29, 315–321.[CrossRef]
    [Google Scholar]
  29. Kong, J. Y., Hwang, S. H., Kim, B. J., Bae, S. K. & Kim, J. D. ( 1997; ). Cloning and expression of an agarase gene from a marine bacterium Pseudomonas sp WE. Biotechnol Lett 19, 23–26.[CrossRef]
    [Google Scholar]
  30. Largo, D. B., Fukami, K. & Hishijima, T. ( 1995; ). Occasional pathogenic bacteria promoting ice-ice disease in the carrageenan-producing red algae Kappaphycus alvarezii and Euchuema denticulatum (Solieraceae, Gigartinales, Rhodophyta). J Appl Phycol 7, 545–554.[CrossRef]
    [Google Scholar]
  31. Lavilla-Pitogo, C. R. ( 1992; ). Agar-digesting bacteria associated with ‘rotten thallus syndrome’ of Gracilaria sp. Aquaculture 102, 1–7.[CrossRef]
    [Google Scholar]
  32. Lee, S. B., Park, J. H., Yoon, S. C., Kim, J. M. & Kong, I. S. ( 2000; ). Sequence analysis of a β-agarase gene (pjaA) from Pseudomonas sp. isolated from marine environment. J Biosci Bioeng 89, 485–488.[CrossRef]
    [Google Scholar]
  33. Leon, O., Quintana, L., Peruzzo, G. & Slebe, J. C. ( 1992; ). Purification and properties of an extracellular agarase from Alteromonas sp. strain-C-1. Appl Environ Microbiol 58, 4060–4063.
    [Google Scholar]
  34. Malmqvist, M. ( 1978; ). Purification and characterization of two different agarose-degrading enzymes. Biochim Biophys Acta 537, 31–43.[CrossRef]
    [Google Scholar]
  35. Morrice, L. M., McLean, M. W., Long, W. F. & Williamson, F. B. ( 1983; ). β-Agarase-I and β-Agarase-II from Pseudomonas atlantica. Substrate specificities. Eur J Biochem 137, 149–154.[CrossRef]
    [Google Scholar]
  36. Murano, E. ( 1995; ). Chemical structure and quality of agars from Gracilaria. J Appl Phycol 7, 245–254.[CrossRef]
    [Google Scholar]
  37. Nomura, K., Naitoh, Y., Muramatsu, S., Yoshizawa, Y., Tsunehiro, J., Fukui, F. & Itoh, M. ( 1998; ). New sulfated oligosaccharides produced by Pseudomonas β-agarase from Gracilaria verrucosa polysaccharide. Biosci Biotechnol Biochem 62, 1190–1195.[CrossRef]
    [Google Scholar]
  38. Park, J. T. & Johnson, M. J. ( 1949; ). A submicrodetermination of glucose. J Biol Chem 181, 149–151.
    [Google Scholar]
  39. Potin, P., Richard, C., Rochas, C. & Kloareg, B. ( 1993; ). Purification and characterization of the α-agarase from Alteromonas agarlyticus (Cataldi) comb. nov., strain GJ1B. Eur J Biochem 214, 599–607.[CrossRef]
    [Google Scholar]
  40. Rossomando, E. F. ( 1990; ). Ion-exchange chromatography. Methods Enzymol 182, 309–317.
    [Google Scholar]
  41. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  42. Sammons, D. W., Adams, L. D. & Nishizawa, E. E. ( 1981; ). Ultrasensitive silverbased color staining of polypeptides in polyacrylamide gels. Electrophoresis 2, 135.[CrossRef]
    [Google Scholar]
  43. Sanger, F., Nicklen, S. & Coulson, A. R. ( 1977; ). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74, 5463–5467.[CrossRef]
    [Google Scholar]
  44. Short, J., Fernandez, J., Sorge, J. & Huse, W. ( 1988; ). λZAP: A bacteriophage λ expression vector with in vivo excision properties. Nucleic Acids Res 16, 7583–7600.[CrossRef]
    [Google Scholar]
  45. Spurr, A. R. ( 1969; ). A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26, 31–43.[CrossRef]
    [Google Scholar]
  46. Sugano, Y., Terada, I., Arita, M., Noma, M. & Matsumoto, T. ( 1993; ). Purification and characterization of a new agarase from a marine bacterium, Vibrio sp. strain JT0107. Appl Environ Microbiol 59, 1549–1554.
    [Google Scholar]
  47. Sugano, Y., Nagae, H., Inagaki, K., Yamamoto, T., Terada, I. & Yamazaki, Y. ( 1995; ). Production and characteristics of some new β-agarases from a marine bacterium, Vibrio sp. strain JT0107. J Ferment Bioeng 79, 549–554.[CrossRef]
    [Google Scholar]
  48. Toncheva-Panova, T. & Ivanova, J. ( 1997; ). A bacterial pathogen of Rhodella reticulata. J Appl Microbiol 83, 707–711.[CrossRef]
    [Google Scholar]
  49. Van der Meulen, H. J. & Harder, W. ( 1975; ). Production and characterization of the agarase of Cytophaga flevensis. Antonie van Leeuwenhoek 41, 431–447.[CrossRef]
    [Google Scholar]
  50. Vera, J., Alvarez, R., Murano, E., Slebe, J. C. & Leon, O. ( 1998; ). Identification of a marine agarolytic Pseudoalteromonas isolate and characterization of its extracellular agarase. Appl Environ Microbiol 64, 4378–4383.
    [Google Scholar]
  51. Weinberger, F., Friedlander, M. & Hoppe, H. G. ( 1999; ). Oligoagars elicit a physiological response in Gracilaria conferta (Rhodophyta). J Phycol 35, 747–755.[CrossRef]
    [Google Scholar]
  52. Yaphe, W. ( 1957; ). The use of agarase from Pseudomonas atlantica in the identification of agar in marine algae (Rhodophyceae). Can J Microbiol 3, 987–993.[CrossRef]
    [Google Scholar]
  53. Zabeau, M. & Stanley, K. K. ( 1982; ). Enhanced expression of the cro-β-galactosidase fusion under the control of the PR promoter of the bacteriophage lambda. EMBO J 1, 1217–1224.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26513-0
Loading
/content/journal/micro/10.1099/mic.0.26513-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error