1887

Abstract

The type 3 fimbriae of are comprised of the major fimbrial subunit (MrkA) and the adhesin (MrkD) that has previously been shown to mediate binding to collagen. The ability of adhesive and non-adhesive derivatives of to form biofilms on collagen-coated surfaces in continuous-flow chambers was investigated. Unlike biofilm formation on abiotic plastic surfaces, the presence of the MrkD adhesin was necessary for growth on collagen-coated surfaces. Fimbriate strains lacking the MrkD adhesin did not efficiently adhere to and grow on these surfaces. Similarly, purified human extracellular matrix and the extracellular matrix formed by human bronchial epithelial cells grown provided a suitable substrate for MrkD-mediated biofilm formation, whereas direct binding to the respiratory cells was not observed. Type 3 fimbriae may therefore have two roles in the early stages of adherence and growth on in-dwelling devices such as endotracheal tubes. The MrkA polypeptide could facilitate adsorption to abiotic polymers of recently implanted devices and the MrkD adhesin could enable bacteria to adhere to and grow on polymers coated with host-derived proteins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26434-0
2003-09-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/9/mic1492397.html?itemId=/content/journal/micro/10.1099/mic.0.26434-0&mimeType=html&fmt=ahah

References

  1. Allen, B. L., Gerlach, G. F. & Clegg, S. ( 1991; ). Nucleotide sequence and functions of mrk determinants necessary for expression of type 3 fimbriae in Klebsiella pneumoniae. J Bacteriol 173, 916–920.
    [Google Scholar]
  2. Clegg, S., Korhonen, K. T., Hornick, B. D. & Tarkkanen, A.-M. ( 1994; ). Type 3 fimbriae of the Enterobacteriaceae. In Fimbriae: Aspects of Adhesion, Genetics, Biogenesis, and Vaccines, pp. 97–104. Edited by Per Klemm. Boca Raton, FL: CRC Press.
  3. Costerton, J. W., Cheng, K.-J., Geesey, G. G., Ladd, T. I., Nickel, J. C., Dasgupta, M. & Marrie, T. J. ( 1987; ). Bacterial biofilms in nature and disease. Annu Rev Microbiol 41, 435–464.[CrossRef]
    [Google Scholar]
  4. Costerton, J. W., Stewart, P. S. & Greenberg, E. P. ( 1999; ). Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322.[CrossRef]
    [Google Scholar]
  5. Craven, D. E., Barber, T. W., Steger, K. A. & Montecalvo, M. A. ( 1990; ). Nosocomial pneumonia in the 1990s: update of epidemiology and risk factors. Semin Respir Infect 5, 157–172.
    [Google Scholar]
  6. Donlan, R. ( 2001; ). Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis 33, 1387–1392.[CrossRef]
    [Google Scholar]
  7. Duma, R. J. ( 1985; ). Gram-negative bacillary infections. Pathogenic and pathophysiologic correlates. Am J Med 78, 154–164.[CrossRef]
    [Google Scholar]
  8. Fenwick, S. A., Curry, V., Clements, S., Hazleman, B. L. & Riley, G. P. ( 2001; ). 96-well plate-based method for total collagen analysis of cell cultures. Biotechniques 30, 1010–1014.
    [Google Scholar]
  9. Francois, P., Vaudaux, P. & Lew, P. D. ( 1998; ). Role of plasma and extracellular matrix proteins in the physiology of foreign body infections. Ann Vas Surg 12, 34–40.[CrossRef]
    [Google Scholar]
  10. Gerlach, G.-F. & Clegg, S. ( 1988; ). Cloning and characterization of the gene cluster encoding type 3 (MR/K) fimbriae of Klebsiella pneumoniae. FEMS Microbiol Lett 49, 377–383.[CrossRef]
    [Google Scholar]
  11. Hastie, A. T., Kraft, W. K., Nyce, K. B., Zangrilli, J. G., Musani, A. I., Fish, J. E. & Peters, S. P. ( 2002; ). Asthmatic epithelial cell proliferation and stimulation of collagen production. Am J Resp Crit Care Med 165, 266–272.[CrossRef]
    [Google Scholar]
  12. Hornick, D. B., Allen, B. L., Horn, M. A. & Clegg, S. ( 1992; ). Adherence to respiratory epithelia by recombinant Escherichia coli expressing Klebsiella pneumoniae type 3 fimbrial gene products. Infect Immun 60, 1577–1588.
    [Google Scholar]
  13. Hornick, D. B., Thommandru, J., Smits, W. & Clegg, S. ( 1995; ). Adherence properties of an mrkD-negative mutant of Klebsiella pneumoniae. Infect Immun 63, 2026–2032.
    [Google Scholar]
  14. Hultgren, S. J. & Normark, S. ( 1991; ). Biogenesis of the bacterial pilus. Curr Opin Genet Dev 1, 313–318.[CrossRef]
    [Google Scholar]
  15. Hultgren, S. J., Normark, S. & Abraham, S. N. ( 1991; ). Chaperone-assisted assembly and molecular architecture of adhesive pili. Annu Rev Microbiol 45, 383–415.[CrossRef]
    [Google Scholar]
  16. Korhonen, T. K., Lahteenmaki, K., Kukkonen, M., Pouttu, R., Hynonen, U., Savolainen, K., Westerlund-Wikstrom, B. & Virkola, R. ( 1997; ). Plasminogen receptors. Turning Salmonella and Escherichia coli into proteolytic organisms. Adv Exp Med Biol 412, 185–192.
    [Google Scholar]
  17. Kukkonen, M., Raunio, T., Virkola, R., Lahteenmaki, K., Makela, P. H., Klemm, P., Clegg, S. & Korhonen, T. K. ( 1993; ). Basement membrane carbohydrate as a target for bacterial adhesion: binding of type I fimbriae of Salmonella enterica and Escherichia coli to laminin. Mol Microbiol 7, 229–237.[CrossRef]
    [Google Scholar]
  18. Langstraat, J., Bohse, M. & Clegg, S. ( 2001; ). The type 3 fimbrial shaft (MrkA) of Klebsiella pneumoniae, but not the fimbrial adhesin (MrkD), facilitates biofilm formation. Infect Immun 69, 5805–5812.[CrossRef]
    [Google Scholar]
  19. Old, D. C. & Adegbola, R. A. ( 1985; ). Antigenic relationships among type-3 fimbriae of Enterobacteriaceae revealed by immunoelectronmicroscopy. J Med Microbiol 20, 113–121.[CrossRef]
    [Google Scholar]
  20. Old, D. C., Tavendale, A. & Senior, B. W. ( 1985; ). A comparative study of the type-3 fimbriae of Klebsiella species. J Med Microbiol 20, 203–214.[CrossRef]
    [Google Scholar]
  21. O'Toole, G. A. & Kolter, R. ( 1998; ). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30, 295–304.[CrossRef]
    [Google Scholar]
  22. Parsek, M. R. & Greenberg, E. P. ( 1999; ). Quorum sensing signals in development of Pseudomonas aeruginosa biofilms. Methods Enzymol 310, 43–55.
    [Google Scholar]
  23. Pratt, L. A. & Kolter, R. ( 1998; ). Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis, and type 1 pili. Mol Microbiol 30, 285–293.[CrossRef]
    [Google Scholar]
  24. Riser, E. & Noone, P. ( 1981; ). Klebsiella capsular type versus site of isolation. J Clin Pathol 34, 552–555.[CrossRef]
    [Google Scholar]
  25. Schembri, M. A. & Klemm, P. ( 2001; ). Biofilm formation in a hydrodynamic environment by novel fimH variants and ramifications for virulence. Infect Immun 69, 1322–1328.[CrossRef]
    [Google Scholar]
  26. Schurtz, T. A., Hornick, D. B., Korhonen, T. K. & Clegg, S. ( 1994; ). The type 3 fimbrial adhesin gene (mrkD) of Klebsiella species is not conserved among all fimbriate strains. Infect Immun 62, 4186–4191.
    [Google Scholar]
  27. Schurtz Sebghati, T. A., Korhonen, T. K., Hornick, D. B. & Clegg, S. ( 1998; ). Characterization of the type 3 fimbrial adhesins of Klebsiella strains. Infect Immun 66, 2887–2894.
    [Google Scholar]
  28. Tarkkanen, A. M., Allen, B. L., Westerlund, B., Holthofer, H., Kuusela, P., Risteli, L., Clegg, S. & Korhonen, T. K. ( 1990; ). Type V collagen as the target for type-3 fimbriae, enterobacterial adherence organelles. Mol Microbiol 4, 1353–1361.[CrossRef]
    [Google Scholar]
  29. Tarkkanen, A. M., Allen, B. L., Williams, P. H. & 7 other authors ( 1992; ). Fimbriation, capsulation, and iron-scavenging systems of Klebsiella strains associated with human urinary tract infection. Infect Immun 60, 1187–1192.
    [Google Scholar]
  30. Tarkkanen, A.-M., Virkola, R., Clegg, S. & Korhonen, T. K. ( 1997; ). Binding of the type 3 fimbriae of Klebsiella pneumoniae to human endothelial and urinary bladder cells. Infect Immun 65, 1546–1549.
    [Google Scholar]
  31. Watnick, P. & Kolter, R. ( 2000; ). Biofilm, city of microbes. J Bacteriol 182, 2675–2679.[CrossRef]
    [Google Scholar]
  32. Watnick, P. I. & Kolter, R. ( 1999; ). Steps in the development of a Vibrio cholerae El Tor biofilm. Mol Microbiol 34, 586–595.[CrossRef]
    [Google Scholar]
  33. Whitely, M., Bangera, M. G., Bumgarner, R. E., Parsek, M. R., Teitzel, G. M., Lory, S. & Greenberg, E. P. ( 2001; ). Gene expression in Pseudomonas aeruginosa biofilms. Nature 413, 860–864.[CrossRef]
    [Google Scholar]
  34. Yurchenko, P. D. & O'Rear, J. J. ( 1994; ). Basal lamina assembly. Curr Opin Cell Biol 6, 674–681.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26434-0
Loading
/content/journal/micro/10.1099/mic.0.26434-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error