1887

Abstract

, a bacterium of biotechnological interest due to its ability to produce mosquitocidal toxins, is unable to use sugars as carbon source. However, genes encoding HPr and EI proteins belonging to a PTS were cloned, sequenced and characterized. Both HPr and EI proteins were fully functional for phosphoenolpyruvate-dependent transphosphorylation in complementation assays using extracts from mutants for one of these proteins. HPr(His) was purified from wild-type and a Ser46/Gln mutant of , and used for phosphorylation experiments using extracts from either or as kinase source. The results showed that both phosphorylated forms, P-Ser46-HPr and P-His15-HPr, could be obtained. The findings also proved indirectly the existence of an HPr kinase activity in . The genetic structure of these genes has some unusual features, as they are co-transcribed with genes encoding metabolic enzymes related to -acetylglucosamine (GlcNAc) catabolism (, and an undetermined ). In fact, this bacterium was able to utilize this amino sugar as carbon and energy source, but a null mutant had lost this characteristic. Investigation of GlcNAc uptake and streptozotocin inhibition in both a wild-type and a null mutant strain led to the proposal that GlcNAc is transported and phosphorylated by an EII element of the PTS, as yet uncharacterized. In addition, GlcNAc-6-phosphate deacetylase and GlcN-6-phosphate deaminase activities were determined; both were induced in the presence of GlcNAc. These results, together with the authors' recent findings of the presence of a phosphofructokinase activity, are strongly indicative of a glycolytic pathway in . They also open new possibilities for genetic improvements in industrial applications.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26231-0
2003-07-01
2020-04-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/7/mic1491687.html?itemId=/content/journal/micro/10.1099/mic.0.26231-0&mimeType=html&fmt=ahah

References

  1. Alexander B., Priest F. G.. 1990; Numerical classification and identification of Bacillus sphaericus including some strains pathogenic for mosquito larvae. J Gen Microbiol136:367–376
    [Google Scholar]
  2. Alice A. F.. 2001; Sistema de fosfotransferasa dependiente del fosfoenolpiruvato ( PTS ) y represión catabólica en Bacillus subtilis PhD Thesis, University of Buenos Aires;
    [Google Scholar]
  3. Alice A. F., Perez-Martinez G., Sanchez-Rivas C.. 2002; Existence of a true phosphofructokinase in Bacillus sphaericus : cloning and sequencing of the pfk gene. Appl Environ Microbiol68:6410–6415
    [Google Scholar]
  4. Altschul S. F., Madden T. L., Schaeffer A. A., Zhang A., Miller W., Lipman D. J.. 1997; Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res25:3398–3402
    [Google Scholar]
  5. Ammer J., Brennenstuhl M., Schindler P., Höltje J. V., Zähner H.. 1979; Phosphorylation of streptozotocin during uptake via the phosphoenolpyruvate : sugar phosphotransferase system in Escherichia coli . Antimicrob Agents Chemother16:801–807
    [Google Scholar]
  6. Bates C. J., Pasternak C. A.. 1965; Further studies on the regulation of amino sugar metabolism in Bacillus subtilis . Biochem J96:147–154
    [Google Scholar]
  7. Baumann P., Clark M. A., Baumann L., Broadwell A. H.. 1991; Bacillus sphaericus as a mosquito pathogen: properties of the organism and its toxins. Microbiol Rev55:425–436
    [Google Scholar]
  8. Charles J. F., Nielsen-Le Roux C., Delécluse A.. 1996; Bacillus sphaericus toxins: molecular biology and mode of action. Annu Rev Entomol41:451–472
    [Google Scholar]
  9. Charrier V., Buckley E., Parsonage D., Galinier A., Darbon E., Jaquinod M., Forest E., Deutscher J., Clairbone A.. 1997; Cloning and sequencing of two enterococcal glpK genes and regulation of the encoded glycerol kinases by phosphoenolpyruvate-dependent, phosphotransferase system-catalyzed phosphorylation of a single histidyl residue. J Biol Chem272:14166–14174
    [Google Scholar]
  10. Clarke J. S., Pasternak C. A.. 1962; The regulation of amino sugar metabolism in Bacillus subtilis . Biochem J84:185–191
    [Google Scholar]
  11. Couch T. L.. 2000; Industrial fermentation and formulation of entomopathogenic bacteria. In Entomopathogenic Bacteria: from Laboratory to Field Application pp 297–316 Edited by F J.. Charles and others Dordrecht: Kluwer;
    [Google Scholar]
  12. deBarjac H., Veron M., Cosmao Dumanoir V.. 1980; Caractérisation biochimique et sérologique de souches de Bacillus sphaericus pathogènes ou non pour les moustiques. Ann Microbiol131B:191–201
    [Google Scholar]
  13. Deutscher J., Küster E., Bergstedt U., Charrier V., Hillen W.. 1995; Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to catabolite repression in Gram-positive bacteria. Mol Microbiol15:1049–1053
    [Google Scholar]
  14. Dossonnet V., Monedero V., Zagorec M., Galinier A., Perez-Martinez G., Deutscher J.. 2000; Phosphorylation of HPr by the bifunctional HPr kinase/P-Ser-HPr phosphatase from Lactobacillus casei controls catabolite repression and inducer exclusion but not inducer expulsion. J Bacteriol182:2582–2590
    [Google Scholar]
  15. Fujita Y., Miwa Y. Galinier A., Deutscher J.. 1995; Specific recognition of the Bacillus subtilis gnt cis -acting catabolite-responsive element by a protein complex formed between CcpA and seryl-phosphorylated HPr. Mol Microbiol17:953–960
    [Google Scholar]
  16. Galinier A., Kravanja M., Engelmann R., Hengstenberg W., Kilhoffer M. C., Deutscher J., Hiech J.. 1998; New protein kinase and protein phosphatase families mediate signal transduction in bacterial catabolite repression. Proc Natl Acad Sci U S A95:1823–1828
    [Google Scholar]
  17. Gonzy-Tréboul G., Zagorec M., Rain-Guian M. C., Steinmetz M.. 1989; Phosphoenolpyruvate : sugar phosphotransferase system of Bacillus subtilis : nucleotide sequence of ptsX , ptsH and the 5′ end of the ptsI and evidence for a ptsHI operon. Mol Microbiol3:103–112
    [Google Scholar]
  18. Guérout-Fleury A. M., Shazand K., Frandsen N., Stragier P.. 1995; Antibiotic-resistance cassettes for Bacillus subtilis . Gene167:335–336
    [Google Scholar]
  19. Haldenwang W. G.. 1995; The sigma factors of Bacillus subtilis . Microbiol Rev59:1–30
    [Google Scholar]
  20. Hengstenberg W., Penberthy W., Hill K., Morse M.. 1969; Phosphotransferase system of Staphylococcus aureus : its requirement for the accumulation and metabolism of galactosides. J Bacteriol99:383–388
    [Google Scholar]
  21. Henkin T. M., Grundy F. J., Nicholson W. L., Chamblis G. H.. 1991; Catabolite repression of α-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli LacI and GalR repressors. Mol Microbiol5:575–584
    [Google Scholar]
  22. Himmelreich R., Hilbert H., Plagens H., Pirkl E., Li B. C., Herrmann R.. 1996; Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae . Nucleic Acids Res24:4420–4449
    [Google Scholar]
  23. Hoischen C., Dijkstra A., Rottem S., Reizer J., Saier M. H. Jr. 1993; Presence of protein constituents of the Gram-positive bacterial phosphotransferase regulatory system in Acholeplasma laidlawii . J Bacteriol175:6599–6604
    [Google Scholar]
  24. Iwamoto R., Imanaga Y.. 1991; Direct evidence of the Entner–Doudoroff pathway operating in the metabolism of d-glucosamine in bacteria. J Biochem109:66–69
    [Google Scholar]
  25. Jacobson G. R., Poy F., Lengeler J. W.. 1990; Inhibition of Streptococcus mutans by the antibiotic streptozotocin: mechanisms of uptake and the selection of carbohydrate-negative mutants. Infect Immun58:543–549
    [Google Scholar]
  26. Jault J. M., Fieulaine S., Nessler S., Gonzalo P., Di Pietro A., Deutscher J., Galinier A.. 2000; The HPr kinase from Bacillus subtilis is a homo-oligomeric enzyme which exhibits strong positive cooperativity for nucleotide and fructose 1,6-bisphosphate binding. J Biol Chem275:1773–1780
    [Google Scholar]
  27. Jones-Mortimer M. C., Kornberg H. L.. 1980; Amino-sugar transport systems in Escherichia coli K12. J Gen Microbiol117:369–376
    [Google Scholar]
  28. Kravanja M., Engelmann R., Dossonnet V.. 7 other authors 1999; The hprK gene of Enterococcus faecalis encodes a novel bifunctional enzyme: the HPr kinase/phosphatase. Mol Microbiol31:59–66
    [Google Scholar]
  29. Krych V. K., Johnson J. L., Yousten A. A.. 1980; Deoxyribonucleic acid homologies among strains of Bacillus sphaericus . Int J Syst Bacteriol30:476–482
    [Google Scholar]
  30. Lai X., Ingram L. O.. 1995; Discovery of a ptsHI operon, which includes a third gene ( ptsT ), in the thermophile Bacillus stearothermophilus . Microbiology141:1443–1449
    [Google Scholar]
  31. Landt O., Grunert H. P., Hanh U.. 1990; A general method for rapid site-directed mutagenesis using the polymerase chain reaction. Gene96:125–128
    [Google Scholar]
  32. Lengeler J.. 1980; Analysis of the physiological effects of the antibiotic streptozotocin on Escherichia coli K12 and other sensitive bacteria. Arch Microbiol128:196–203
    [Google Scholar]
  33. Ludwig H., Homuth G., Schmalisch M., Dyka F. M., Hecker M., Stülke J.. 2001; Transcription of glycolytic genes and operons in Bacillus subtilis : evidence for the presence of multiple levels of control of the gapA operon. Mol Microbiol41:409–422
    [Google Scholar]
  34. Martin-Verstraete I., Débarbouillé M., Klier A., Rapoport G.. 1990; Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon. J Mol Biol214:657–671
    [Google Scholar]
  35. Mijakovic I., Poncet S., Galinier A.. 9 other authors 2002; Pyrophosphate-producing protein dephosphorylation by HPr kinase/phosphorylase: a relic of early life?. Proc Natl Acad Sci U S A99:13442–13447
    [Google Scholar]
  36. Mitchell W., Reizer J., Herring C., Hoischen C., Saier M. H. Jr. 1993; Identification of a phosphoenolpyruvate : fructose phosphotransferase system (fructose-1-phosphate forming) in Listeria monocytogenes . J Bacteriol175:2758–2761
    [Google Scholar]
  37. Mobley H. T., Doyle R. J., Streips U. N., Langemeier S. O.. 1982; Transport and incorporation of N -acetylglucosamine in Bacillus subtilis . J Bacteriol150:8–15
    [Google Scholar]
  38. Peri K. G., Waygood E. B.. 1988; Sequence of cloned Enzyme IINag of the phosphoenolpyruvate :  N -acetylglucosamine phosphotransferase system of Escherichia coli . Biochemistry27:6054–6061
    [Google Scholar]
  39. Plumbridge J.. 1989; Sequence of the nagBACD operon in Escherichia coli K12 and pattern of transcription within the nag regulon. Mol Microbiol3:506–515
    [Google Scholar]
  40. Plumbridge J.. 1995; Co-ordinated regulation of amino sugar biosynthesis and degradation: the NagC repressor acts as both an activator and a repressor for the transcription of the glmUS operon and requires two separated NagC binding sites. EMBO J15:3958–3965
    [Google Scholar]
  41. Plumbridge J.. 2001; Regulation of PTS gene expression by the homologous transcriptional regulators, Mlc and NagC, in Escherichia coli (or how two similar repressors can behave differently). J Mol Microbiol Biotechnol3:371–380
    [Google Scholar]
  42. Porter A. G., Davidson E. W., Liu J. W.. 1993; Mosquitocidal toxins of Bacilli and their genetic manipulation for effective biological control of mosquitoes. Microbiol Rev57:838–861
    [Google Scholar]
  43. Postma P. W., Lengeler J. W., Jacobson G. R.. 1993; Phosphoenolpyruvate : carbohydrate phosphotransferase systems of bacteria. Microbiol Rev57:543–594
    [Google Scholar]
  44. Priest F. G.. 2000; Biodiversity of the entomopathogenic, endospore-forming bacteria. In Entomopathogenic Bacteria: from Laboratory to Field Application pp 1–22 Edited by F J.. Charles and others Dordrecht: Kluwer;
    [Google Scholar]
  45. Reizer J., Peterkofsky A., Romano A. H.. 1988; Evidence for the presence of heat-stable protein (HPr) and ATP-dependent HPr kinase in heterofermentative lactobacilli lacking phosphoenolpyruvate : glycose phosphotransferase activity. Proc Natl Acad Sci U S A85:2041–2045
    [Google Scholar]
  46. Reizer J., Hoischen C., Titgemeyer F., Rivolta C., Rabus R., Stülke J., Karamata D., Saier M. H. Jr, Hillen W.. 1998; A novel protein kinase that controls carbon catabolite repression in bacteria. Mol Microbiol27:1157–1169
    [Google Scholar]
  47. Reizer J., Bachem S., Reizer A., Arnaud M., Saier M. H. Jr, Stülke J.. 1999a; Novel phosphotransferase system genes revealed by genome analysis – the complete complement of PTS proteins encoded within the genome of Bacillus subtilis . Microbiology145:3419–3429
    [Google Scholar]
  48. Reizer J., Reizer A., Lagrou M. J., Folger K. R., Kendall Stover C., Saier M. H. Jr. 1999b; Novel phosphotransferase systems revealed by bacterial genome analysis: the complete repertoire of pts genes in Pseudomonas aeruginosa . J Mol Microbiol Biotechnol1:289–293
    [Google Scholar]
  49. Rippere K. E., Johnson J. L., Yousten A. A.. 1997; DNA similarities among mosquito-pathogens and nonpathogenic strains of Bacillus sphaericus . Int J Syst Bacteriol47:214–216
    [Google Scholar]
  50. Romano A., Saier M. H. Jr. 1992; Evolution of bacterial phosphoenolpyruvate : sugar phosphotransferase system. I. Physiological and organismic considerations. In The Evolution of Metabolic Function pp 143–170 Edited by Mortlock R. P. Boca Raton, FL: CRC Press;
    [Google Scholar]
  51. Roossien F. F., Brink J., Robillard G. T.. 1983; A simple procedure for the synthesis of [32P]phosphoenolpyruvate via the pyruvate kinase exchange reaction at equilibrium. Biochim Biophys Acta760:185–187
    [Google Scholar]
  52. Russell B. L., Jelley S. A., Yousten A. A.. 1989; Carbohydrate metabolism in the mosquito pathogen Bacillus sphaericus 2362. Appl Environ Microbiol55:294–297
    [Google Scholar]
  53. Saier M. H. Jr, Chavaux S., Cook G. M., Deutscher J., Paulsen I. T., Reizer J., Ye J. J.. 1996; Catabolite repression and inducer control in Gram-positive bacteria. Microbiology142:217–230
    [Google Scholar]
  54. Sambrook J., Fritsh E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual Cold Spring Harbor NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  55. Steinhauer K., Jepp T., Hillen W., Stülke J. 2002; A novel mode of control of Mycoplasma pneumoniae HPr kinase/phosphatase activity reflects its parasitic lifestyle. Microbiology148:3277–3284
    [Google Scholar]
  56. Stülke J., Hillen W.. 1999; Carbon catabolite repression in bacteria. Curr Opin Microbiol2:195–201
    [Google Scholar]
  57. Stülke J., Martin-Verstraete I., Zagorec M., Rose M., Klier A., Rapoport G.. 1997; Induction of the Bacillus subtilis ptsGHI operon by glucose is controlled by a novel antiterminator, GlcT. Mol Microbiol25:65–78
    [Google Scholar]
  58. Stülke J., Arnaud M., Rapoport G., Martin-Verstraete I.. 1998; PRD – a protein domain involved in PTS-dependent induction and carbon catabolite repression of catabolic operons in bacteria. Mol Microbiol28:865–874
    [Google Scholar]
  59. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The CLUSTAL X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882
    [Google Scholar]
  60. Titgemeyer F., Hillen W.. 2002; Global control of sugar metabolism: a gram-positive solution. Antonie Van Leeuwenhoek82:59–71
    [Google Scholar]
  61. Titgemeyer F., Walkenhorst J., Reizer J., Stuiver M., Cui X., Saier M. H. Jr. 1995; Identification and characterization of phosphoenolpyruvate : fructose phosphotransferase in three Streptomyces species. Microbiology141:51–58
    [Google Scholar]
  62. Vogler A. P., Lengeler J. W.. 1989; Analysis of the nag regulon from Escherichia coli K12 and Klebsiella pneumoniae and of its regulation. Mol Gen Genet219:97–105
    [Google Scholar]
  63. Wagner A., Küster-Schöck E., Hillen W.. 2000; Sugar uptake and carbon catabolite repression in Bacillus megaterium strains with inactivated ptsHI . J Mol Microbiol Biotechnol2:587–592
    [Google Scholar]
  64. Wang F., Xiao X., Saito A., Schrempf H.. 2002; Streptomyces olivaceoviridis possesses a phosphotransferase system that mediates specific, phosphoenolpyruvate-dependent uptake of N -acetylglucosamine. Mol Genet Genomics268:344–351
    [Google Scholar]
  65. Zhu P. P., Herzberg O., Peterkofsky A.. 1998; Topography of the interaction of HPr(Ser) kinase with HPr. Biochemistry37:11762–11770
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26231-0
Loading
/content/journal/micro/10.1099/mic.0.26231-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error