1887

Abstract

In bacteria, the first reaction of the tryptophan biosynthetic pathway involves the conversion of chorismate and glutamine to anthranilate by the action of anthranilate synthase, which is composed of the ( gene product) and ( gene product) subunits. In this study, the tryptophan biosynthetic gene of the spirochaete was interrupted by a kanamycin-resistance cassette by homologous recombination. The double cross-over mutant was not able to grow on solid or in liquid EMJH medium. In contrast, the mutant showed a wild-type phenotype when tryptophan or anthranilate was added to the media, therefore showing that disruption of the gene resulted in tryptophan auxotrophy. The authors have also characterized a second selectable marker that allows the construction of a spectinomycin-resistant shuttle vector and the functional complementation of the mutant.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26065-0
2003-03-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/3/mic149689.html?itemId=/content/journal/micro/10.1099/mic.0.26065-0&mimeType=html&fmt=ahah

References

  1. Baril, C., Richaud, C., Fournie, E., Baranton, G. & Saint Girons, I. ( 1992; ). Cloning of dapD, aroD and asd of Leptospira interrogans serovar icterohaemorrhagiae, and nucleotide sequence of the asd gene. J Gen Microbiol 138, 47–53.[CrossRef]
    [Google Scholar]
  2. Belfaiza, J., Martel, A., Margarita, D. & Saint Girons, I. ( 1998; ). Direct sulfhydrylation for methionine biosynthesis in Leptospira meyeri. J Bacteriol 180, 250–255.
    [Google Scholar]
  3. Bono, J. L., Elias, A. F., Kupko, J. J., Stevenson, B., Tilly, K. & Rosa, P. ( 2000; ). Efficient targeted mutagenesis in Borrelia burgdorferi. J Bacteriol 182, 2445–2452.[CrossRef]
    [Google Scholar]
  4. Charon, N. W., Russell, C., Johnson, C. & Peterson, D. ( 1974; ). Amino acid biosynthesis in the spirochete Leptospira: evidence for a novel pathway of isoleucine biosynthesis. J Bacteriol 117, 203–211.
    [Google Scholar]
  5. Chary, V. K., Amaya, E. I. & Piggot, P. J. ( 1997; ). Neomycin- and spectinomycin-resistance replacement vectors for Bacillus subtilis. FEMS Microbiol Lett 153, 135–139.[CrossRef]
    [Google Scholar]
  6. Chi, B., Limberger, R. J. & Kuramitsu, H. K. ( 2002; ). Complementation of a Treponema denticola flgE mutant with a novel coumermycin A1-resistant T. denticola shuttle vector system. Infect Immun 70, 2233–2237.[CrossRef]
    [Google Scholar]
  7. Ellinghausen, H. C. & McCullough, W. G. ( 1965; ). Nutrition of Leptospira pomona and growth of 13 other serotypes: fractionation of oleic albumin complex and a medium of bovine albumin and polysorbate 80. Am J Vet Res 26, 45–51.
    [Google Scholar]
  8. Fraser, C. M., Casjens, S., Huang, W. M. & 35 other authors ( 1997; ). Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390, 580–586.[CrossRef]
    [Google Scholar]
  9. Fraser, C. M., Norris, S. J., Weinstock, C. M. & 30 other authors ( 1998; ). Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281, 375–388.[CrossRef]
    [Google Scholar]
  10. Hardham, J. M. & Rosey, E. L. ( 2000; ). Antibiotic selective markers and spirochete genetics. In The Spirochetes: Molecular and Cellular Biology, pp. 101–110. Edited by M. H. Saier & J. Garcia-Lara. Wymondham, UK: Horizon Scientific Press.
  11. Johnson, R. C. & Harris, V. G. ( 1967; ). Differentiation of pathogenic and saprophytic leptospires. J Bacteriol 94, 27–31.
    [Google Scholar]
  12. Mintz, C. S., Chen, J. & Shuman, H. A. ( 1988; ). Isolation and characterization of auxotrophic mutants of Legionella pneumophila that fail to multiply in human monocytes. Infect Immun 56, 1449–1455.
    [Google Scholar]
  13. Murphy, E., Huwyler, L. & de Freire Bastos Mdo, C. ( 1985; ). Transposon Tn554: complete nucleotide sequence and isolation of transposition-defective and antibiotic-sensitive mutants. EMBO J 4, 3357–3365.
    [Google Scholar]
  14. Picardeau, M., Brenot, A. & Saint Girons, I. ( 2001; ). First evidence for gene replacement in Leptospira spp. Inactivation of L. biflexa flaB results in non-motile mutants deficient in endoflagella. Mol Microbiol 40, 189–199.[CrossRef]
    [Google Scholar]
  15. Pittard, A. J. ( 1996; ). Biosynthesis of the aromatic amino acids. In Escherichia coli and Salmonella: Cellular and Molecular Biology, pp. 458–484. Edited by F. C. Neidhart and others. Washington, DC: American Society for Microbiology.
  16. Richaud, C., Margarita, D., Baranton, G. & Saint Girons, I. ( 1990; ). Cloning of genes required for amino acid biosynthesis from Leptospira interrogans serovar icterohaemorrhagiae. J Gen Microbiol 136, 651–656.[CrossRef]
    [Google Scholar]
  17. Saint Girons, I., Bourhy, P., Ottone, C., Picardeau, M., Yelton, D., Hendrix, R. W., Glaser, P. & Charon, N. ( 2000; ). The LE1 bacteriophage replicates as a plasmid within Leptospira biflexa: construction of an L. biflexa-Escherichia coli shuttle vector. J Bacteriol 182, 5700–5705.[CrossRef]
    [Google Scholar]
  18. Sartakova, M. L., Dobrikova, E. Y. & Cabello, F. C. ( 2001a; ). Constructing of Borrelia burgdorferi pGK12 cloning vector derivatives expressing kanamycin and spectinomycin resistance genes. Abstract D-164, 101st General Meeting of the American Society for Microbiology.
  19. Sartakova, M. L., Dobrikova, E. Y., Motaleb, M. A., Godfrey, H. P., Charon, N. W. & Cabello, F. C. ( 2001b; ). Complementation of a nonmotile flaB mutant of Borrelia burgdorferi by chromosomal integration of a plasmid containing a wild-type flaB allele. J Bacteriol 183, 6558–6564.[CrossRef]
    [Google Scholar]
  20. Simmons, C. P., Hodgson, A. L. M. & Strugnell, R. A. ( 1997; ). Attenuation and vaccine potential of aroQ mutants of Corynebacterium pseudotuberculosis. Infect Immun 65, 3048–3056.
    [Google Scholar]
  21. Smith, D. A., Parish, T., Stoker, N. G. & Bancroft, G. J. ( 2001; ). Characterization of auxotrophic mutants of Mycobacterium tuberculosis and their potential as vaccine candidate. Infect Immun 69, 1142–1150.[CrossRef]
    [Google Scholar]
  22. Tchamedeu Kameni, A. P., Couture-Tosi, E., Saint-Girons, I. & Picardeau, M. ( 2002; ). Inactivation of the spirochete recA gene results in a mutant with low viability and irregular nucleoid morphology. J Bacteriol 184, 452–458.[CrossRef]
    [Google Scholar]
  23. Tilly, K., Elias, A. F., Bono, J. L., Stewart, P. E. & Rosa, P. ( 2001; ). DNA exchange and insertional inactivation in spirochetes. In The Spirochetes: Molecular and Cellular Biology, pp. 111–122. Edited by M. H. Saier & J. Garcia-Lara. Wymondham, UK: Horizon Scientific Press.
  24. Yelton, D. B. & Cohen, R. A. ( 1986; ). Analysis of cloned DNA from Leptospira biflexa serovar patoc which complements a deletion of the Escherichia coli trpE gene. J Bacteriol 165, 41–46.
    [Google Scholar]
  25. Yelton, D. B. & Peng, S. L. ( 1989; ). Identification and nucleotide sequence of the Leptospira biflexa serovar patoc trpE and trpG genes. J Bacteriol 171, 2083–2089.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26065-0
Loading
/content/journal/micro/10.1099/mic.0.26065-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error