1887

Abstract

The gene encoding the dextransucrase DsrD from the industrial strain Lcc4 was isolated by PCR using degenerate primers recognizing conserved regions present in other dextransucrase-encoding genes from spp. and Southern blot analyses on total genomic DNA. N-terminal sequence analysis of the active protein recovered in the culture showed that the secreted protein of 165 kDa is devoid of a 42 aa prepeptide which is removed post-translationally, most likely by signal peptidase cleavage. Primer extension and Northern blot analysis identified a monocistronic mRNA with two transcription initiation sites. Expression of the dextransucrase DsrD was investigated in pH-controlled fed-batch cultures via Northern blot analysis and enzyme activity measurement during the experiments. Sucrose levels of 20 g l were shown to induce the DsrD biosynthesis around 10-fold. The combination of pH-controlled fed-batch fermentation and Northern analysis clearly showed that expression was related to the growth of the bacteria. was transferred to and expressed in MG1363. Controlled fed-batch cultures revealed that active dextransucrase was produced and secreted by the recombinant strain. The expression was independent of sucrose levels. These results show that dextransucrase can be efficiently expressed and secreted in a non-, heterologous host and is able to drive dextran synthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26029-0
2003-04-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/4/mic149973.html?itemId=/content/journal/micro/10.1099/mic.0.26029-0&mimeType=html&fmt=ahah

References

  1. Alsop R. M.. 1983; Industrial production of dextrans. Prog Ind Microbiol18:1–44
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402
    [Google Scholar]
  3. Arguello-Morales M. A., Remaud-Simeon M., Pizzut S., Sarcabal P., Willemot R., Monsan P.. 2000; Sequence analysis of the gene encoding alternansucrase, a sucrose glucosyltransferase from Leuconostoc mesenteroides NRRL B-1355. FEMS Microbiol Lett182:81–85
    [Google Scholar]
  4. Barker P. E., Ajongwen N. J.. 1991; The production of the enzyme dextransucrase using nonaerated fermentation techniques. Biotechnol Bioeng37:703–707
    [Google Scholar]
  5. Bradford M. M.. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem72:248–254
    [Google Scholar]
  6. Davies G., Henrissat B.. 1995; Structures and mechanisms of glycosyl hydrolases. Structure 3:853–859
    [Google Scholar]
  7. De Man J. C., Rogosa M., Sharpe M. E.. 1960; A medium for the cultivation of lactobacilli. J Appl Bacteriol23:130–135
    [Google Scholar]
  8. Dols M., Remaud S. M., Monsan P. F.. 1997; Dextransucrase production by Leuconostoc mesenteroides NRRL B-1299. Comparison with Leuconostoc mesenteroides NRRL B-512F. Enzyme Microb Technol20:523–530
    [Google Scholar]
  9. Dower W. J., Miller J. F., Ragsdale C. W.. 1988; High efficiency transformation of Escherichia coli by high voltage electroporation. Nucleic Acids Res16:6127–6145
    [Google Scholar]
  10. Ferretti J. J., Gilpin M. L., Russell R. R.. 1987; Nucleotide sequence of a glucosyltransferase gene from Streptococcus sobrinus MFe28. J Bacteriol169:4271–4278
    [Google Scholar]
  11. Funane K., Yamada M., Shiraiwa M., Takahara H., Yamamoto N., Ichishima E., Kobayashi M.. 1995; Aggregated form of dextransucrases from Leuconostoc mesenteroides NRRL B-512F and its constitutive mutant. Biosci Biotechnol Biochem59:776–780
    [Google Scholar]
  12. Gasson M. J.. 1983; Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol154:1–9
    [Google Scholar]
  13. Giffard P. M., Jacques N. A.. 1994; Definition of a fundamental repeating unit in streptococcal glucosyltransferase glucan-binding regions and related sequences. J Dent Res73:1133–1141
    [Google Scholar]
  14. Hanahan D.. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol166:557–580
    [Google Scholar]
  15. Holo M. Y., Nes I. F.. 1989; High frequency transformation of Escherichia coli with plasmids. Appl Environ Microbiol55:3119–3123
    [Google Scholar]
  16. Kato C., Nakano Y., Lis M., Kuramitsu H. K.. 1992; Molecular genetic analysis of the catalytic site of Streptococcus mutans glucosyltransferases. Biochem Biophys Res Commun189:1184–1188
    [Google Scholar]
  17. Kobayashi M., Matsuda K.. 1986; Electrophoretic analysis of the multiple forms of dextransucrase from Leuconostoc mesenteroides . J Biochem100:615–621
    [Google Scholar]
  18. Lawford G. R., Kligerman A., Williams T., Lawford H. G.. 1979; Dextran biosynthesis and dextransucrase production by continuous culture of Leuconostoc mesenteroides . Biotechnol Bioeng21:1121–1131
    [Google Scholar]
  19. Marmur J.. 1961; A procedure for isolation of deoxyribonucleic acid from microorganisms. J Mol Biol3:208–218
    [Google Scholar]
  20. Miller A. W., Eklund S. H., Robyt J. F.. 1986; Milligram to gram scale purification and characterization of dextransucrase from Leuconostoc mesenteroides NRRL B-512F. Carbohydr Res147:119–133
    [Google Scholar]
  21. Monchois V., Willemot R. M., Remaud-Simeon M., Croux C., Monsan P.. 1996; Cloning and sequencing of a gene coding for a novel dextransucrase from Leuconostoc mesenteroides NRRL B-1299 synthesizing onlyα (1–6) and α (1–3) linkages. Gene182:23–32
    [Google Scholar]
  22. Monchois V., Remaud-Simeon M., Monsan P., Willemot R. M.. 1998; Cloning and sequencing of a gene coding for an extracellular dextransucrase ( dsr B) from Leuconostoc mesenteroides NRRL B-1299 synthesising only a (1-6) glucan. FEMS Microbiol Lett159:307–315
    [Google Scholar]
  23. Monchois V., Willemot R. M., Monsan P.. 1999; Glucansucrases: mechanism of action and structure-function relationships. FEMS Microbiol Lett23:131–151
    [Google Scholar]
  24. Mooser G., Hefta S. A., Paxton R. J., Shively J. E., Lee T. D.. 1991; Isolation and sequence of an active-site peptide containing a catalytic aspartic acid from two Streptococcus sobrinus α -glucosyltransferases. J Biol Chem266:8916–8922
    [Google Scholar]
  25. Neely W. B., Nott J.. 1962; Dextransucrase: an induced enzyme from Leuconostoc mesenteroides . Biochemistry1:1136–1140
    [Google Scholar]
  26. Nelson N.. 1944; A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem153:375–380
    [Google Scholar]
  27. Nielsen H., Engelbrecht J., Brunak S., von Heijne G.. 1997; Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng10:1–6
    [Google Scholar]
  28. Nielsen H., Brunak S., von Heijne G.. 1999; Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Eng12:3–9
    [Google Scholar]
  29. Platteeuw C., Simons G., de Vos W. M.. 1994; Use of the Escherichia coli beta-glucuronidase ( gus A) gene as a reporter gene for analyzing promoters in lactic acid bacteria. Appl Environ Microbiol60:587–593
    [Google Scholar]
  30. Quirasco M., Lopez-Munguia A., Remaud-Simeon M., Monsan P., Farrès A.. 1999; Induction and transcription studies of the dextransucrase gene in Leuconostoc mesenteroides NRRL B-512F. Appl Environ Microbiol65:5504–5509
    [Google Scholar]
  31. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Sanchez-Gonzalez M., Alagon A., Rodriguez-Sotres R., Lopez-Munguia A.. 1999; Proteolytic processing of dextransucrase of Leuconostoc mesenteroides . FEMS Microbiol Lett181:25–30
    [Google Scholar]
  33. Tsumori H., Minami T., Kuramitsu H. K.. 1997; Identification of essential amino acids in the Streptococcus mutans glucosyltransferases. J Bacteriol179:3391–3396
    [Google Scholar]
  34. van Asseldonk M., Simons A., Visser H., de Vos W. M., Simons G.. 1993; Cloning, nucleotide sequence, and regulatory analysis of the Lactococcus lactis dnaJ gene. J Bacteriol175:1637–1644
    [Google Scholar]
  35. von Heijne G.. 1983; Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem133:17–21
    [Google Scholar]
  36. Wagner E., Gotz F., Bruckner R.. 1993; Cloning and characterization of the scr A gene encoding the sucrose-specific Enzyme II of the phosphotransferase system from Staphylococcus xylosus . Mol Gen Genet241:33–41
    [Google Scholar]
  37. Wilke-Douglas M., Perchorowicz J. T. H. C. M., Thomas B. R.. 1989; Methods and compositions for altering physical characteristics of fruit and fruit products. PCT Patent WO89:12386
    [Google Scholar]
  38. Yanisch-Perron C., Vieira J., Messing J.. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene33:103–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26029-0
Loading
/content/journal/micro/10.1099/mic.0.26029-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error