- Volume 149, Issue 4, 2003
Volume 149, Issue 4, 2003
- Microbiology Comment
-
- Cell And Developmental Biology
-
-
-
Analysis of microtubules and F-actin structures in hyphae and conidia development of the opportunistic human pathogenic black yeast Aureobasidium pullulans
More LessOrganization of the cytoskeleton was studied in the ascomycetous black yeast Aureobasidium pullulans, an opportunistic human pathogen, in an effort to present it as a potential target of antifungal therapy. Long cytoplasmic microtubules, extending along the hyphae from the base to the growing apex, were the dominant structures in multinucleate interphase cells. Before mitosis these microtubules disappeared and were replaced by intranuclear spindles. This reorganization of microtubules occurred along the whole length of hypha before synchronous division of the nuclei. Actin cytokinetic rings were rarely seen. Cortical actin in the form of patches accumulated in areas of cell wall growth, i.e. in the hyphal apex and near the occasionally formed septum. Actin cables were not seen. During synchronous conidiogenesis, the cytoplasmic microtubules extended along developing conidia, and actin patches lined their subcortical areas. Actin rings were formed regularly at the base of uninuclear conidia. Microtubule inhibitor methyl benzimidazol-2-ylcarbamate disintegrated the microtubules, and inhibited nuclear division, development of hyphae and conidiogenesis. Actin inhibitor Cytochalasin D induced swelling of hyphal apexes and developing conidia. This inhibitory activity ceased after 5 to 12 h when the occasional septa appeared and conidiogenesis was completed. The lack of unicellular organization in multinucleate hyphae of A. pullulans seems be related to a rarity of F-actin structures: i.e. absence of actin cables, the lack of actin cytokinetic rings in particular, resulting in the uncoupling of the nuclear division from cytokinesis; the association of both processes is, however, retained during conidiogenesis.
-
-
-
-
Precise determinations of C and D periods by flow cytometry in Escherichia coli K-12 and B/r
More LessThe C and D cell cycle periods of seven Escherichia coli K-12 strains and three E. coli B/r strains were determined by computer simulation of DNA histograms obtained by flow cytometry of batch cultures grown at several different generation times. To obtain longer generation times two of the K-12 strains were cultivated at several different dilution rates in glucose-limited chemostats. The replication period (C period) was found to be similar in K-12 and B/r strains grown at similar generation times. At generation times below 60 min the C period was constant; above 60 min it increased linearly with increasing generation time. The period from termination of replication to cell division (D period) was more variable. It was much shorter in B/r than in K-12 strains. Like the C period it was relatively constant at generation times below 60 min and it increased with increasing generation times at longer generation times. In glucose-limited chemostats good correlation was found between D periods and generation times, whereas batch cultures exhibited carbon-source-dependent variations. Chemostat cultures showed cell cycle variations very similar to those obtained in batch cultures. These flow cytometric determinations of cell cycle periods confirm earlier determinations of the C period and establish that the D period also varies with generation time in slowly growing cultures. In addition they extend the range of growth rates at which cell cycle periods have been determined in E. coli K-12.
-
- Biochemistry And Molecular Biology
-
-
-
Identification of type II and type III pyoverdine receptors from Pseudomonas aeruginosa
Pseudomonas aeruginosa produces, under conditions of iron limitation, a high-affinity siderophore, pyoverdine (PVD), which is recognized at the level of the outer membrane by a specific TonB-dependent receptor, FpvA. So far, for P. aeruginosa, three different PVDs, differing in their peptide chain, have been described (types I–III), but only the FpvA receptor for type I is known. Two PVD-producing P. aeruginosa strains, one type II and one type III, were mutagenized by a mini-TnphoA3 transposon. In each case, one mutant unable to grow in the presence of the strong iron chelator ethylenediaminedihydroxyphenylacetic acid (EDDHA) and the cognate PVD was selected. The first mutant, which had an insertion in the pvdE gene, upstream of fpvA, was unable to take up type II PVD and showed resistance to pyocin S3, which is known to use type II FpvA as receptor. The second mutant was unable to take up type III PVD and had the transposon insertion in fpvA. Cosmid libraries of the respective type II and type III PVD wild-type strains were constructed and screened for clones restoring the capacity to grow in the presence of PVD. From the respective complementing genomic fragments, type II and type III fpvA sequences were determined. When in trans, type II and type III fpvA restored PVD production, uptake, growth in the presence of EDDHA and, in the case of type II fpvA, pyocin S3 sensitivity. Complementation of fpvA mutants obtained by allelic exchange was achieved by the presence of cognate fpvA in trans. All three receptors posses an N-terminal extension of about 70 amino acids, similar to FecA of Escherichia coli, but only FpvAI has a TAT export sequence at its N-terminal end.
-
-
-
-
Transmissible Burkholderia cepacia genomovar IIIa strains bind and convert monomeric iron(III) protoporphyrin IX into the μ-oxo oligomeric form
More LessBurkholderia cepacia isolates of genomovar III are highly transmissible amongst patients with cystic fibrosis (CF) and express a 97 kDa putative haem-binding protein (HBP) [ Smalley, J. W., Charalabous, P., Birss, A. J. & Hart, C. A. (2001) . Clin Diagn Lab Immunol 8, 509–514]. An investigation of the interactions of iron(III) protoporphyrin IX with epidemic and non-epidemic strains of B. cepacia to determine the role of the above protein in haem acquisition and binding is reported herein. Spectrophotometric titrations of cell suspensions of genomovar IIIa strains BC7 and C5424 with iron(III) protoporphyrin IX, at pH 7·0, resulted in the depletion of Fe(III)PPIX.OH monomers and formation of the μ-oxo oligomeric species, [Fe(III)PPIX]2O. Difference spectroscopy indicated a continuous conversion of the monomeric iron(III) protoporphyrin IX into μ-oxo oligomers. Incubations with Fe(III)PPIX.OH monomers at pH 6·5 also showed that cells could shift the equilibrium to generate the μ-oxo oligomeric form. Genomovar I strains ATCC 25416 and LMG 17997 were unable to mediate this conversion. SDS-PAGE of genomovar IIIa strains exposed to Fe(III)PPIX.OH at pH 6·5 followed by tetramethylbenzidine/H2O2 staining revealed, in addition to the 97 kDa HBP, two proteins of 77 and 149 kDa located in the outer membrane which bound Fe(III)PPIX.OH monomers. These proteins were absent from the genomovar I strains. Genomovar IIIa strains BC7 and C5424 showed increased cellular binding of [Fe(III)PPIX]2O, and as a consequence, displayed increased catalase activities compared to cells of the genomovar I isolates. It is concluded that, in addition to the putative 97 kDa HBP, B. cepacia genomovar IIIa strains express two outer-membrane proteins which function to bind and convert Fe(III)PPIX.OH monomers into the μ-oxo oligomeric form, [Fe(III)PPIX]2O. The ability to perform this conversion at both neutral and slightly acidic pHs may enable epidemic strains to withstand attack from neutrophil-derived H2O2 in the inflamed CF lung.
-
-
-
DNA restriction is a barrier to natural transformation in Pseudomonas stutzeri JM300
More LessNatural transformation is a mechanism for intra- and interspecific transfer of chromosomal DNA in Pseudomonas stutzeri. During this process a single strand derived from duplex DNA is transported into the cytoplasm and recombined with resident DNA. By electroporation, which introduces duplex DNA into cells, 100-fold lower transformation frequencies of P. stutzeri JM300 were observed with shuttle vector or broad-host-range plasmid DNA when the plasmids had replicated in Escherichia coli and not in P. stutzeri JM300. Moreover, the natural transformation with cloned chromosomal P. stutzeri JM300 DNA was reduced about 40-fold when the DNA had not been propagated in P. stutzeri JM300 but in E. coli. Restriction was also active during natural transformation by single-stranded DNA. Restriction during natural transformation and electroporation was abolished in mutants isolated from mutagenized JM300 cells after applying a multiple plasmid electroporation strategy for the enrichment of restriction-defective strains. The mutants had retained the ability for DNA modification. The P. stutzeri strain ATCC 17587 was found to have no restriction–modification system as seen in JM300. It is discussed whether restriction during natural transformation acts at presynaptic or postsynaptic stages of transforming DNA. Restriction as a barrier to transformation apparently contributes to sexual isolation and therefore may promote speciation in the highly diverse species P. stutzeri.
-
-
-
Rational engineering of the regioselectivity of TecA tetrachlorobenzene dioxygenase for the transformation of chlorinated toluenes
More LessThe tetrachlorobenzene dioxygenase (TecA) of Ralstonia sp. PS12 carries out the first step in the aerobic biodegradation of chlorinated toluenes. Besides dioxygenation of the aromatic ring of 4-chloro-, 2,4-, 2,5- and 3,4-dichlorotoluene as the main reaction, it also catalyses mono-oxygenation of the methyl groups of 2,3-, 2,6-, 3,5-di- and 2,4,5-trichlorotoluene as the main reactions, channelling these compounds into dead-end pathways. Based on the crystal structure of the homologous naphthalene dioxygenase (NDO) and alignment of the α-subunits of NDO and TecA, the substrate pocket of TecA was modelled. Recently, for NDO and the homologous 2-nitrotoluene dioxygenase (2NTDO), two amino acids (Phe352 of NDO and Asn258 of 2NTDO) were identified which control the regioselectivity of these enzymes. The corresponding amino acids at Phe366 and Leu272 of TecA were substituted to change the regioselectivity and to expand the product spectrum. Position 366 was shown to control regioselectivity of the enzyme, although mutations resulted in decreased or lost activity. Amino acid substitutions at Leu272 had little or no effect on the regioselectivity of TecA, but had significant effects on the product formation rate. Substitutions at both positions changed the site of oxidation of 2,4,5-trichlorotoluene slightly. As new products, 3,4,6-trichloro-1-methyl-1,2-dihydroxy-1,2-dihydrocyclohexan-3,5-diene, 4,6-dichloro-3-methylcatechol, 3,6-dichloro-4-methylcatechol and 3,4-dichloro-6-methylcatechol were identified.
-
-
-
Identification and molecular analysis of cable pilus biosynthesis genes in Burkholderia cepacia
More LessBurkholderia cepacia is an opportunistic respiratory pathogen in cystic fibrosis patients. One highly transmissible and virulent clone belonging to genomovar IIIa expresses pili with unique cable morphology, which enable the bacterium to bind cytokeratin 13 in epithelial cells. The cblA gene, encoding the major pilin subunit, is often used as a DNA marker to identify potentially virulent isolates. The authors have now cloned and sequenced four additional genes, cblB, cblC, cblD and cblS, in the pilus gene cluster. This work shows that the products of the first four genes of the cbl operon, cblA, cblB, cblC and cblD, are sufficient for pilus assembly on the bacterial surface. Deletion of cblB abrogated pilus assembly and compromised the stability of the CblA protein in the periplasm. In contrast, deletion of cblD resulted in no pili, but there was no effect on expression and stability of the CblA protein subunit. These results, together with protein sequence homologies, predicted structural analyses, and the presence of typical amino acid motifs, are consistent with the assignment of functional roles for CblB as a chaperone that stabilizes the major pilin subunit in the periplasm, and CblD as the initiator of pilus biogenesis. It is also shown that expression of Cbl pili in Escherichia coli is not sufficient to mediate the binding of bacteria to the epithelial cell receptor cytokeratin 13, and that B. cepacia still binds to cytokeratin 13 in the absence of Cbl pili, suggesting that additional bacterial components are required for effective binding.
-
-
-
Molecular characterization and expression analysis of the dextransucrase DsrD of Leuconostoc mesenteroides Lcc4 in homologous and heterologous Lactococcus lactis cultures
More LessThe gene encoding the dextransucrase DsrD from the industrial strain Leuconostoc mesenteroides Lcc4 was isolated by PCR using degenerate primers recognizing conserved regions present in other dextransucrase-encoding genes from Leuconostoc spp. and Southern blot analyses on total genomic DNA. N-terminal sequence analysis of the active protein recovered in the culture showed that the secreted protein of 165 kDa is devoid of a 42 aa prepeptide which is removed post-translationally, most likely by signal peptidase cleavage. Primer extension and Northern blot analysis identified a monocistronic dsrD mRNA with two transcription initiation sites. Expression of the dextransucrase DsrD was investigated in pH-controlled fed-batch cultures via Northern blot analysis and enzyme activity measurement during the experiments. Sucrose levels of 20 g l−1 were shown to induce the DsrD biosynthesis around 10-fold. The combination of pH-controlled fed-batch fermentation and Northern analysis clearly showed that dsrD expression was related to the growth of the bacteria. dsrD was transferred to and expressed in Lactococcus lactis MG1363. Controlled fed-batch cultures revealed that active dextransucrase was produced and secreted by the recombinant L. lactis strain. The expression was independent of sucrose levels. These results show that dextransucrase can be efficiently expressed and secreted in a non-Leuconostoc, heterologous host and is able to drive dextran synthesis.
-
-
-
α-5,6-Dimethylbenzimidazole adenine dinucleotide (α-DAD), a putative new intermediate of coenzyme B12 biosynthesis in Salmonella typhimurium
More LessThe CobT enzyme of Salmonella typhimurium was shown in vitro to have NAD+-dependent ADPribosyltransferase activity. The CobT enzyme transferred the ADPribosyl moiety of NAD+ onto 5,6-dimethylbenzimidazole (DMB) yielding a new dinucleotide, namely α-5,6-dimethylbenzimidazole adenine dinucleotide (α-DAD), whose identity was established by mass spectrometry. The N 1-(α-d-ribosyl)-5,6-dimethylbenzimidazoyl moiety (α-ribazole) of α-DAD was incorporated into adenosylcobalamin (AdoCbl) by cell-free extracts of S. typhimurium, indicating that α-DAD served as an intermediate of AdoCbl biosynthesis. The rate of transfer of the ADPribosyl moiety was slower than the rate of transfer of the phosphoribosyl moiety of nicotinate mononucleotide (NaMN) to DMB. The CobT enzyme displayed a low K m for NaMN (0·51 mM) relative to the one for NAD+ (9 mM); nicotinate adenine dinucleotide (NaAD) and nicotinamide mononucleotide (NMN) also served as substrates for CobT. In spite of the high K m of CobT for NAD+, the latter is proposed to be a relevant physiological substrate of CobT, given that the intracellular concentrations of NaMN, NMN and NaAD in actively growing S. typhimurium are undetectable. Evidence shows that extracts of S. typhimurium contain an as-yet unidentified dinucleotide pyrophosphatase that can cleave α-DAD into α-ribazole-5′-P and AMP; α-ribazole-5′-P can then enter the AdoCbl biosynthetic pathway.
-
-
-
A CysB-regulated and σ54-dependent regulator, SfnR, is essential for dimethyl sulfone metabolism of Pseudomonas putida strain DS1
More LessPseudomonas putida strain DS1 utilizes dimethyl sulfide (DMS) as a sulfur source, and desulfurizes it via dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO2) and methanesulfonate (MSA). Its Tn5 mutant, Dfi74J, no longer utilized DMS, DMSO and DMSO2, but could oxidize DMS to DMSO2, suggesting that the conversion of DMSO2 to MSA was interrupted in the mutant. Sequencing of the Tn5 flanking region of Dfi74J demonstrated that a gene, sfnR (designated for dimethyl sulfone utilization), encoding a transcriptional regulator containing an ATP-dependent σ54-association domain and a DNA-binding domain, was disrupted. sfnR is part of an operon with two other genes, sfnE and sfnC, located immediately upstream of sfnR and in the same orientation. The genes encode NADH-dependent FMN reductase (SfnE) and FMNH2-dependent monooxygenase (SfnC). Complementation of Dfi74J with an sfnR-expressing plasmid led to restoration of its growth on DMS, DMSO and DMSO2. An rpoN-defective mutant of strain DS1, which lacks the σ 54 factor, grew on MSA, but not on DMS, DMSO and DMSO2, indicating that SfnR controls expression of gene(s) involved in DMSO2 metabolism by interaction with σ 54-RNA polymerase. Northern hybridization and a reporter gene assay with an sfn–lacZ transcriptional fusion elucidated that expression of the sfnECR operon was induced under sulfate limitation and was dependent on a LysR-type transcriptional regulator, CysB. This is believed to be the first report that a σ 54-dependent transcriptional regulator induced under sulfate limitation is involved in sulfur assimilation.
-
- Genes And Genomes
-
-
-
Identification and characterization of novel pyoverdine synthesis genes in Pseudomonas aeruginosa
More LessFluorescent pseudomonads secrete yellow-green siderophores named pyoverdines or pseudobactins. These comprise a dihydroxyquinoline derivative joined to a type-specific peptide and, usually, a carboxylic acid or amide. In Pseudomonas aeruginosa strain PAO1, six genes that encode proteins required for pyoverdine synthesis (pvd genes) have been identified previously. Expression of all of these genes requires an alternative sigma factor PvdS. The purpose of this research was to identify other genes that are required for pyoverdine synthesis in P. aeruginosa PAO1. Fourteen candidate genes were identified from the PAO1 genome sequence on the basis of their location in the genome, the functions of homologues in other bacteria, and whether their expression was likely to be PvdS-dependent. The candidate genes were mutated and the effects of the mutations on pyoverdine production were determined. Eight new pvd genes were identified. The presence of homologues of pvd genes in other strains of P. aeruginosa was determined by Southern blotting and in other fluorescent pseudomonads by interrogation of genome sequences. Five pvd genes were restricted to strains of P. aeruginosa that make the same pyoverdine as strain PAO1, suggesting that they direct synthesis of the type-specific peptide. The remaining genes were present in all strains of P. aeruginosa that were examined and homologues were present in other Pseudomonas species. These genes are likely to direct synthesis of the dihydroxyquinoline moiety and the attached carboxylic acid/amide group. It is likely that most if not all of the genes required for pyoverdine synthesis in P. aeruginosa PAO1 have now been identified and this will form the basis for a biochemical description of the pathway of pyoverdine synthesis.
-
-
-
-
Translational selection is operative for synonymous codon usage in Clostridium perfringens and Clostridium acetobutylicum
More LessHere, the codon usage patterns of two Clostridium species (Clostridium perfringens and Clostridium acetobutylicum) are reported. These prokaryotes are characterized by a strong mutational bias towards A+T, a striking excess of coding sequences and purine-rich leading strands of replication, strong GC-skews and a high frequency of genomic rearrangements. As expected, it was found that the mutational bias dominates codon usage but there is some variation of synonymous codon choices among genes in the two species. This variation was investigated using a multivariate statistical approach. In the two species, two major trends were detected. One was related to the location of the sequences in the leading or lagging strand of replication, and the other was associated with the preferential use of putatively translational optimal codons in heavily expressed genes. Analyses of the estimated number of synonymous and non-synonymous substitutions among orthologous genes permit us to postulate that optimal codons might be selected not only for speed but also for accuracy during translation.
-
-
-
Ehp53, an Entamoeba histolytica protein, ancestor of the mammalian tumour suppressor p53
More LessThis paper reports the identification of Ehp53, a p53-like Entamoeba histolytica protein, which binds to the human p53 DNA consensus sequence (oli-p53). Monoclonal antibodies against p53 (Ab-1 and Ab-2) recognized a single 53 kDa spot in two-dimensional gels and inhibited the formation of complexes produced by E. histolytica nuclear extracts and oli-p53. Additionally, E. histolytica gene promoter sequences with high homology to oli-p53 formed complexes with nuclear proteins that were abolished by oli-p53. Ehp53 protein levels increased in UV-irradiated trophozoites. This protein was also detected in Entamoeba moshkovskii and Entamoeba invadens. By confocal microscopy, Ehp53 was located in the nuclei, EhkO organelles and cytoplasm. The Ehp53-encoding gene was cloned and its predicted amino acid sequence showed 30–54 % and 50–57 % homology with important domains of the human and the Drosophila melanogaster p53 proteins, respectively. This homology included the tetramerization domain, the nuclear export signal and a nuclear localization signal. Ehp53 also contains seven of the eight DNA-binding residues and two of the four Zn2+-binding sites described for p53. A recombinant Ehp53 was recognized by Ab-2. Ehp53 is believed to be the first p53-like protein found in protozoa and may be the evolutionary ancestor of the mammalian p53.
-
-
-
Multiple inverted DNA repeats of Bacteroides fragilis that control polysaccharide antigenic variation are similar to the hin region inverted repeats of Salmonella typhimurium
The important opportunistic pathogen Bacteroides fragilis is a strictly anaerobic Gram-negative bacterium and a member of the normal resident human gastrointestinal microbiota. Our earlier studies indicated that there is considerable within-strain variation in polysaccharide expression, as detected by mAb labelling. Analysis of the genome sequence has revealed multiple invertible DNA regions, designated fragilis invertible (fin) regions, seven of which are upstream of polysaccharide biosynthesis loci and are approximately 226 bp in size. Using orientation-specific PCR primers and sequence analysis with populations enriched for one antigenic type, two of these invertible regions were assigned to heteropolymeric polysaccharides with different sizes of repeating units, as determined by PAGE pattern. The implication of these findings is that inversion of the fin regions switches biosynthesis of these polysaccharides off and on. The invertible regions are bound by inverted repeats of 30 or 32 bp with striking similarity to the Salmonella typhimurium H flagellar antigen inversion cross-over (hix) recombination sites of the invertible hin region. It has been demonstrated that a plasmid-encoded Hin invertase homologue (FinB), present in B. fragilis NCTC 9343, binds specifically to the invertible regions and the recombination sites have been designated as fragilis inversion cross-over (fix) sites.
-
-
-
Digging deeper: uncovering genetic loci which modulate photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1
More LessA new genetic locus was identified in Rhodobacter sphaeroides which is required for optimal synthesis of the light-harvesting spectral complexes as well as for optimal growth under anaerobic conditions with dimethyl sulfoxide (DMSO) as a terminal electron acceptor. The primary structure of the deduced osp gene product shows significant homology to the receiver domain of known response regulators common to bacterial two-component systems. However, site-directed mutagenesis revealed that the Osp protein appears not to be involved in a phospho-relay signal transduction pathway. Paradoxically, the effect of the Osp protein upon spectral complex levels is exerted at the transcriptional level of photosynthesis gene expression. The absence of the Osp protein does not appear to have a general effect on house-keeping metabolism. In cells lacking Osp, the levels of DMSO reductase appear to be normal. The quaternary structure of the Osp protein was determined to be a homodimer and it was directly demonstrated that Osp does not bind to the promoter region of photosynthesis genes as judged by mobility-shift experiments and primary structure analysis.
-
-
-
Corynebacterium ammoniagenes class Ib ribonucleotide reductase: transcriptional regulation of an atypical genomic organization in the nrd cluster
E. Torrents, I. Roca and I. GibertRibonucleotide reductases (RNRs) are a family of complex enzymes that play an essential role in all organisms because they catalyse de novo synthesis of deoxyribonucleotides required for DNA replication and repair. Three different classes of RNR have been described according to their metal cofactors and organic radicals. Class Ib RNR is encoded in four different genes (nrdH, nrdI, nrdE and nrdF) organized in an operon. The authors previously cloned and sequenced the genes encoding the active class Ib RNR of Corynebacterium ammoniagenes and showed that these genes are clustered in an atypical nrdEF region, which differs from that of other known class Ib enzymes because of an intergenic sequence (1171 bp) present between nrdE and nrdF. This study investigated the transcriptional organization and regulation of this nrd region by RT-PCR. Three different and independent mRNA were found (nrdHIE, nrdF and an ORF present in the intergenic region), each one being transcribed from its own promoter and being essential for normal growth. The ratio of nrdF to nrdHIE mRNA was 9·1, as determined by competitive RT-PCR; the expression of both nrdHIE and nrdF was found to be dependent on the culture growth phase, and was induced in the presence of hydroxyurea, manganese and hydrogen peroxide. This is believed to be the first direct evidence for a manganese-dependent transcriptional regulation of nrd genes. These results suggest a common and coordinated regulation of the different nrd genes, despite their being transcribed from independent promoters.
-
-
-
Lic16A of Clostridium thermocellum, a non-cellulosomal, highly complex endo-β-1,3-glucanase bound to the outer cell surface
Clostridium thermocellum produces one major β-1,3-glucanase. Genomic DNA fragments containing the gene were cloned from two strains, DSM1237T (6848 bp) and F7 (9766 bp). Overlapping sequences were 99·9 % identical. The nucleotide sequences contained reading frames for a putative transposase, endo-β-1,3-1,4-glucanase CelC, a putative transcription regulator of the LacI type, β-1,3-glucanase Lic16A and a putative membrane protein. The licA genes of both strains encoded an identical protein of 1324 aa with a calculated molecular mass of 148 kDa. Lic16A is an unusually complex protein consisting of a leader peptide, a threefold repeat of an S-layer homologous module (SLH), an unknown module, a catalytic module of glycosyl hydrolase family 16 and a fourfold repeat of a carbohydrate-binding module of family CBM4a. The recombinant Lic16A protein was characterized as an endo-1,3(4)-β-glucanase with a specific activity of 2680 and 340 U mg−1 and a K m of 0·94 and 2·1 mg ml−1 towards barley β-glucan and laminarin, respectively. It was specific for β-glucans containing β-1,3-linkages with an optimum temperature of 70 °C at pH 6·0. The N-terminal SLH modules were cleaved from the protein as well in Escherichia coli as in C. thermocellum, but nevertheless bound tightly to the rest of the protein. Lic16A was located on the cell surface from which it could be purified after fractionated solubilization. Its inducible production allowed C. thermocellum to grow on β-1,3- or β-1,3-1,4-glucan.
-
-
-
Promoters and transcripts for genes involved in methanol oxidation in Methylobacterium extorquens AM1
More LessTwenty-five genes are involved in methanol oxidation to formaldehyde by the methanol dehydrogenase system in the facultative methylotroph Methylobacterium extorquens AM1 organized in five gene clusters. RT-PCR was used to assess the transcripts for the main gene clusters that encode methanol dehydrogenase and proteins required for its activity (mxaFGJIRSACKLDEHB), and the enzymes that are required for the synthesis of the methanol dehydrogenase prosthetic group, pyrroloquinoline quinone (pqqABC/DE and the pqqFG cluster). In both cases, positive bands were obtained corresponding to mRNA spanning each of the genes in the cluster, but not across the first and last genes and the gene immediately upstream or downstream of the cluster, respectively. These results suggest that these three gene clusters are each transcribed as a single operon. Confirmation was obtained by cloning a number of intergenic regions into a promoter probe vector. None of these regions showed significant promoter activity. Promoter regions were analysed for mxaF, pqqA, orf181 upstream of pqqFG, and mxaW, a gene located upstream of mxaF and divergently transcribed. The promoter regions for these genes were defined to within 100, 46, 124 and 146 bp, respectively, and the two unknown transcriptional start sites were determined, for mxaW and orf181. Alignment of these promoter regions suggests that they all may be transcribed by the σ 70 orthologue in M. extorquens AM1.
-
Volumes and issues
-
Volume 171 (2025)
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)