1887

Abstract

Crop improvement in agriculture generally focuses on yield, seed quality and nutritional characteristics, as opposed to resistance to biotic stresses. Consequently, natural antifeedant toxins are often rare in seed material, with commercial crops being prone to insect pest predation. In the specific case of cowpea (), smallholder cropping is affected by insect pests that reproduce inside the stored seeds. Entomopathogenic organisms can offer an alternative to conventional pesticides for pest control, producing hydrolases that degrade insect exoskeleton. In this study, protein secretions of the ascomycete , which conferred bioinsecticidal activity against , were characterized via 2D electrophoresis and mass spectrometry. Proteases, reductases and acetyltransferase enzymes were detected. These may be involved in degradation and nutrient uptake from dehydrated . Proteins identified in this work allowed description of metabolic pathways. Their potential applications in biotechnology include both novel compound development and production of genetically modified plants resistant to insect pests.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/022913-0
2008-12-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/12/3766.html?itemId=/content/journal/micro/10.1099/mic.0.2008/022913-0&mimeType=html&fmt=ahah

References

  1. Adane, K., Moore, D. & Archer, S. A. ( 1996; ). Preliminary studies on the use of Beauveria bassiana to control Sitophilus zeamais (Coleoptera: Curculionidae) in the laboratory. J Stored Prod Res 32, 105–113.[CrossRef]
    [Google Scholar]
  2. Albrecht, E. B., Hunyady, A. B., Stark, G. R. & Patterson, T. E. ( 2000; ). Mechanisms of sod2 gene amplification in Schizosaccharomyces pombe. Mol Cell Biol 11, 873–886.[CrossRef]
    [Google Scholar]
  3. Banks, I. R., Specht, C. A., Donlin, M. J., Gerik, K. J., Levitz, S. M. & Lodge, J. K. ( 2005; ). A chitin synthase and its regulator protein are critical for chitosan production and growth of the fungal pathogen Cryptococcus neoformans. Eukaryot Cell 4, 1902–1912.[CrossRef]
    [Google Scholar]
  4. Becker, N. ( 1998; ). The use of Bacillus thuringiensis subsp. israelensis (Bti) against mosquitoes, with special emphasis on the ecological impact. Isr J Entomol 32, 63–69.
    [Google Scholar]
  5. Bidochka, M. J. & Khachatourians, G. G. ( 1994; ). Protein hydrolysis in grasshopper cuticles by entomopathogenic fungal extracellular proteases. J Invertebr Pathol 63, 7–13.[CrossRef]
    [Google Scholar]
  6. Bourassa, C., Vincent, C., Lomer, C. J., Borgemeister, C. & Mauffette, Y. ( 2001; ). Effects of entomopathogenic Hyphomycetes against the larger grain borer, Prostephanus truncatus (Horn.) (Coleoptera: Bostrichidae), and its predator, Teretriosoma nigrescens Lewis (Coleoptera: Histeridae). J Invertebr Pathol 77, 75–77.[CrossRef]
    [Google Scholar]
  7. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  8. Brunner, K., Zeilinger, S., Ciliento, R., Woo, S. L., Lorito, M., Kubicek, C. P. & Mach, R. L. ( 2005; ). Improvement of the fungal biocontrol agent Trichoderma atroviride to enhance both antagonism and induction of plant systemic disease resistance. Appl Environ Microbiol 71, 3959–3965.[CrossRef]
    [Google Scholar]
  9. Carberry, S., Neville, C. M., Kavanagh, K. A. & Doyle, S. ( 2006; ). Analysis of major intracellular proteins of Aspergillus fumigatus by MALDI mass spectrometry: identification and characterization of an elongation factor 1B protein with glutathione transferase activity. Biochem Biophys Res Commun 341, 1096–1104.[CrossRef]
    [Google Scholar]
  10. Cherry, A. J., Abalob, P. & Hella, K. ( 2005; ). A laboratory assessment of the potential of different strains of the entomopathogenic fungi Beauveria bassiana (Balsamo) Vuillemin and Metarhizium anisopliae (Metschnikoff) to control Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) in stored cowpea. J Stored Prod Res 41, 295–309.[CrossRef]
    [Google Scholar]
  11. Credland, P. F., Dick, K. M. & Wright, A. W. ( 1986; ). Relationship between larval density, adult size and egg production in cowpea seed beetle, Callosobruchus maculatus. Ecol Entomol 11, 41–50.[CrossRef]
    [Google Scholar]
  12. Cronin, V. B., Maras, B., Barra, D. & Doonan, S. ( 1991; ). The amino acid sequence of the aspartate aminotransferase from baker's yeast (Saccharomyces cerevisiae). Biochem J 277, 335–340.
    [Google Scholar]
  13. Delincee, H., Villavicencio, A.-L. C. H. & Mancini-Filho, J. ( 1998; ). Protein quality of irradiated Brazilian beans. Radiat Phys Chem 52, 43–47.[CrossRef]
    [Google Scholar]
  14. Destruelle, M., Holzer, H. & Klionsky, D. J. ( 1994; ). Identification and characterization of a novel yeast gene: the YGP1 gene product is a highly glycosylated secreted protein that is synthesized in response to nutrient limitation. Mol Cell Biol 14, 2740–2754.[CrossRef]
    [Google Scholar]
  15. Einerhand, A. W., Voorn-Brouwer, T. M., Erdmann, R., Kunau, W. H. & Tabak, H. F. ( 1991; ). Regulation of transcription of the gene coding for peroxisomal 3-oxoacyl-CoA thiolase of Saccharomyces cerevisiae. Eur J Biochem 200, 113–122.[CrossRef]
    [Google Scholar]
  16. Galvan, T. L., Koch, R. L. & Hutchison, W. D. ( 2006; ). Toxicity of indoxacarb and spinosad to the multicolored Asian lady beetle, Harmonia axyridis (Coleoptera: Coccinellidae), via three routes of exposure. Pest Manag Sci 62, 797–804.[CrossRef]
    [Google Scholar]
  17. Germann, U. A., Müller, G., Hunziker, P. E. & Lerch, K. ( 1988; ). Characterization of two allelic forms of Neurospora crassa laccase. Amino- and carboxyl-terminal processing of a precursor. J Biol Chem 263, 885–896.
    [Google Scholar]
  18. Gil-Navarro, I., Gil, M. L., Casanova, M., O'Connor, J. E., Martínez, J. P. & Gozalbo, D. ( 1997; ). The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase of Candida albicans is a surface antigen. J Bacteriol 179, 4992–4999.
    [Google Scholar]
  19. Gorg, A., Postel, W. & Gunther, S. ( 1988; ). The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 9, 531–546.[CrossRef]
    [Google Scholar]
  20. Grinyer, J., McKay, M., Nevalainen, H. & Herbert, B. R. ( 2004; ). Fungal proteomics: initial mapping of biological control strain Trichoderma harzianum. Curr Genet 45, 163–169.[CrossRef]
    [Google Scholar]
  21. Grinyer, J., Hunt, S., McKay, M., Herbert, B. R. & Nevalainen, H. ( 2005; ). Proteomic response of the biological control fungus Trichoderma atroviride to growth on the cell walls of Rhizoctonia solani. Curr Genet 47, 381–388.[CrossRef]
    [Google Scholar]
  22. Henzel, W. J., Billeci, T. M., Stults, J. T. & Wong, S. C. ( 1993; ). Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci U S A 90, 5011–5015.[CrossRef]
    [Google Scholar]
  23. Hess, D. C., Lu, W., Rabinowitz, J. D. & Botstein, D. ( 2006; ). Ammonium toxicity and potassium limitation in yeast. PLoS Biol 4
    [Google Scholar]
  24. Jackai, L. E. N. & Adalla, C. B. ( 1997; ). Pest management practices in cowpea. In Advances in Cowpea Research, pp. 240–258. Edited by B. B. Singh, D. R. M. Raj, K. E. Dashiell & L. E. N. Jackai. Ibadan, Nigeria: International Institute of Tropical Agriculture (IITA) and Japan International Research Center for Agricultural Sciences (JIRCAS).
  25. Jenkins, J., Scott, M., Mayans, O., Pickersgill, R., Harris, G., Connerton, I. & Gravesen, T. ( 1996; ). Crystallization and preliminary X-ray analysis of pectin lyase A from Aspergillus niger. Acta Crystallogr D Biol Crystallogr 52, 402–404.[CrossRef]
    [Google Scholar]
  26. Kang, S. C., Park, S. & Lee, D. G. ( 1999; ). Purification and characterization of a novel chitinase from the entomopathogenic fungus, Metarhizium anisopliae. J Invertebr Pathol 73, 276–281.[CrossRef]
    [Google Scholar]
  27. Kassa, A., Zimmermann, G., Stephan, D. & Vidal, S. ( 2002; ). Susceptibility of Sitophilus zeamais (Motsch.) (Coleoptera: Curculionidae) and Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) to entomopathogenic fungi from Ethiopia. Biochem Sci Technol 12, 727–736.[CrossRef]
    [Google Scholar]
  28. Kaya, H. K. & Gaugler, R. ( 1993; ). Entomopathogenic nematodes. Annu Rev Entomol 38, 181–206.[CrossRef]
    [Google Scholar]
  29. Kneip, C., Lockhart, P., Voß, C. & Maier, U.-G. ( 2007; ). Nitrogen fixation in eukaryotes – new models for symbiosis. BMC Evol Biol 7, 55 [CrossRef]
    [Google Scholar]
  30. Kolkman, A., Daran-Lapujade, P., Fullaondo, A., Olsthoorn, M. M. A., Pronk, J T., Slijper, M. & Heck, A. J. ( 2006; ). Proteome analysis of yeast response to various nutrient limitations. Mol Syst BiolMay 2006
    [Google Scholar]
  31. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  32. Legner, E. F. ( 1995; ). Biological control of Diptera of medical and veterinary importance. J Vector Ecol 20, 59–120.
    [Google Scholar]
  33. Lesage, G. & Bussey, H. ( 2006; ). Cell wall assembly in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70, 317–343.[CrossRef]
    [Google Scholar]
  34. Lomako, J., Lomako, W. M. & Whelan, W. J. ( 2004; ). Glycogenin: the primer for mammalian and yeast glycogen synthesis. Biochim Biophys Acta 1673, 45–55.[CrossRef]
    [Google Scholar]
  35. Lorito, M., Woo, S. L., Garcia, I., Colucci, G., Harman, G. E., Pintor-Toro, J. A., Filippone, E., Muccifora, S., Lawrence, C. B. & other authors ( 1998; ). Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc Natl Acad Sci U S A 95, 7860–7865.[CrossRef]
    [Google Scholar]
  36. Marzluf, G. A. ( 1981; ). Regulation of nitrogen metabolism and gene expression in fungi. Microbiol Rev 45, 437–461.
    [Google Scholar]
  37. Murad, A. M., Laumann, R. A., Lima, Tde A., Sarmento, R. B. C., Noronha, E. F., Rocha, T. L., Valadares-Inglis, M. C. & Franco, O. L. ( 2006; ). Screening of entomopathogenic Metarhizium anisopliae isolates and proteomic analysis of secretion synthesized in response to cowpea weevil (Callosobruchus maculatus) exoskeleton. Comp Biochem Physiol C Toxicol Pharmacol 142, 365–370.[CrossRef]
    [Google Scholar]
  38. Murad, A. M., Laumann, R. A., Mehta, A., Noronha, E. F. & Franco, O. L. ( 2007; ). Screening and secretomic analysis of enthomopatogenic Beauveria bassiana isolates in response to cowpea weevil (Callosobruchus maculatus) exoskeleton. Comp Biochem Physiol C Toxicol Pharmacol 145, 333–338.[CrossRef]
    [Google Scholar]
  39. Nahar, P., Ghormade, V. & Deshpande, M. V. ( 2004; ). The extracellular constitutive production of chitin deacetylase in Metarhizium anisopliae: possible edge to entomopathogenic fungi in the biological control of insect pests. J Invertebr Pathol 85, 80–88.[CrossRef]
    [Google Scholar]
  40. Rice, W. C. & Cogburn, R. R. ( 1999; ). Activity of entomopathogenic fungus Beauveria bassiana (Deuteromycota: Hyphomycetes) against three coleopteran pests of stored grain. J Econ Entomol 92, 691–694.[CrossRef]
    [Google Scholar]
  41. Scholte, E. J., Knols, B. G. J., Samson, R. A. & Takken, W. ( 2004; ). Entomopathogenic fungi for mosquito control. J Insect Sci 4, 19 [CrossRef]
    [Google Scholar]
  42. Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. ( 1996; ). Mass spectrometric sequencing of proteins from silver stained polyacrylamide gels. Anal Chem 68, 850–858.[CrossRef]
    [Google Scholar]
  43. Sorensen, T. K., Dyera, P. S., Fierro, F., Laube, U. & Peberdy, J. F. ( 2003; ). Characterization of the gptA gene, encoding UDP N-acetylglucosamine : dolichol phosphate N-acetylglucosaminylphosphoryl transferase, from the filamentous fungus, Aspergillus niger. Biochim Biophys Acta 1619, 89–97.[CrossRef]
    [Google Scholar]
  44. St Leger, R. J., Cooper, R. M. & Charnley, A. K. ( 1986; ). Cuticle degrading enzymes of entomopathogenic fungi: regulation of production of chitinolytic enzymes. J Gen Microbiol 132, 1509–1517.
    [Google Scholar]
  45. St Leger, R. J., Charnley, A. K. & Cooper, R. M. ( 1987; ). Characterization of cuticle-degrading proteases produced by the entomopathogen Metarhizium anisopliae. Arch Biochem Biophys 253, 221–232.[CrossRef]
    [Google Scholar]
  46. St Leger, R. J., Bidochka, M. J. & Roberts, D. W. ( 1994; ). Isoforms of the cuticle-degrading Pr1 proteinase and production of a metallo-proteinase by Metarhizium anisopliae. Arch Biochem Biophys 313, 1–7.[CrossRef]
    [Google Scholar]
  47. St Leger, R. J., Joshi, L., Bidochka, M. J., Rizzo, N. W. & Roberts, D. W. ( 1996; ). Biochemical characterization and ultrastructural localization of two extracellular trypsins produced by Metarhizium anisopliae in infected insect cuticles. Appl Environ Microbiol 62, 1257–1264.
    [Google Scholar]
  48. Suarez, M. B., Sanz, L., Chamorro, M. I., Rey, M., González, F. J., Llobell, A. & Monte, E. ( 2005; ). Proteomic analysis of secreted proteins from Trichoderma harzianum: identification of a fungal cell wall-induced aspartic protease. Fungal Genet Biol 42, 924–934.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/022913-0
Loading
/content/journal/micro/10.1099/mic.0.2008/022913-0
Loading

Data & Media loading...

Supplements

Growth curve of in the presence and absence of dehydrated insects [ PDF] (12 kb) Bradford analysis of protein concentration of fungal secretion in the presence and absence of dehydrated insects. [ PDF] (16 kb) evidence of a secretion signal peptide in proteins secreted by in response to the presence of adult insects. [ PDF] (17 kb)

PDF

Growth curve of in the presence and absence of dehydrated insects [ PDF] (12 kb) Bradford analysis of protein concentration of fungal secretion in the presence and absence of dehydrated insects. [ PDF] (16 kb) evidence of a secretion signal peptide in proteins secreted by in response to the presence of adult insects. [ PDF] (17 kb)

PDF

Growth curve of in the presence and absence of dehydrated insects [ PDF] (12 kb) Bradford analysis of protein concentration of fungal secretion in the presence and absence of dehydrated insects. [ PDF] (16 kb) evidence of a secretion signal peptide in proteins secreted by in response to the presence of adult insects. [ PDF] (17 kb)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error