1887

Abstract

The LysR family of transcriptional regulators represents the most abundant type of transcriptional regulator in the prokaryotic kingdom. Members of this family have a conserved structure with an N-terminal DNA-binding helix–turn–helix motif and a C-terminal co-inducer-binding domain. Despite considerable conservation both structurally and functionally, LysR-type transcriptional regulators (LTTRs) regulate a diverse set of genes, including those involved in virulence, metabolism, quorum sensing and motility. Numerous structural and transcriptional studies of members of the LTTR family are helping to unravel a compelling paradigm that has evolved from the original observations and conclusions that were made about this family of transcriptional regulators.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/022772-0
2008-12-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/12/3609.html?itemId=/content/journal/micro/10.1099/mic.0.2008/022772-0&mimeType=html&fmt=ahah

References

  1. Ahn, J. S., Chandramohan, L., Liou, L. E. & Bayles, K. W. ( 2006; ). Characterization of CidR-mediated regulation in Bacillus anthracis reveals a previously undetected role of S-layer proteins as murein hydrolases. Mol Microbiol 62, 1158–1169.[CrossRef]
    [Google Scholar]
  2. Akakura, R. & Winans, S. C. ( 2002a; ). Mutations in the occQ operator that decrease OccR-induced DNA bending do not cause constitutive promoter activity. J Biol Chem 277, 15773–15780.[CrossRef]
    [Google Scholar]
  3. Akakura, R. & Winans, S. C. ( 2002b; ). Constitutive mutations of the OccR regulatory protein affect DNA bending in response to metabolites released from plant tumors. J Biol Chem 277, 5866–5874.[CrossRef]
    [Google Scholar]
  4. Aravind, L., Anantharaman, V., Balaji, S., Babu, M. M. & Iyer, L. M. ( 2005; ). The many faces of the helix-turn-helix domain: transcription regulation and beyond. FEMS Microbiol Rev 29, 231–262.
    [Google Scholar]
  5. Axler-Diperte, G. L., Miller, V. L. & Darwin, A. J. ( 2006; ). YtxR, a conserved LysR-like regulator that induces expression of genes encoding a putative ADP-ribosyltransferase toxin homologue in Yersinia enterocolitica. J Bacteriol 188, 8033–8043.[CrossRef]
    [Google Scholar]
  6. Barnett, M. J., Swanson, J. A. & Long, S. R. ( 1998; ). Multiple genetic controls on Rhizobium meliloti syrA, a regulator of exopolysaccharide abundance. Genetics 148, 19–32.
    [Google Scholar]
  7. Bartowsky, E. & Normark, S. ( 1991; ). Purification and mutant analysis of Citrobacter freundii AmpR, the regulator of chromosomal AmpC β-lactamase. Mol Microbiol 5, 1715–1725.[CrossRef]
    [Google Scholar]
  8. Bartowsky, E. & Normark, S. ( 1993; ). Interactions of wild-type and mutant AmpR of Citrobacter freundii with target DNA. Mol Microbiol 10, 555–565.[CrossRef]
    [Google Scholar]
  9. Belitsky, B. R., Janssen, P. J. & Sonenshein, A. L. ( 1995; ). Sites required for GltC-dependent regulation of Bacillus subtilis glutamate synthase expression. J Bacteriol 177, 5686–5695.
    [Google Scholar]
  10. Biel, A. J. & Umbarger, H. E. ( 1981; ). Mutations in the ilvY gene of Escherichia coli K-12 that cause constitutive expression of ilvC. J Bacteriol 146, 718–724.
    [Google Scholar]
  11. Blazey, D. L. & Burns, R. O. ( 1980; ). Gene ilvY of Salmonella typhimurium. J Bacteriol 142, 1015–1018.
    [Google Scholar]
  12. Bohannon, D. E. & Sonenshein, A. L. ( 1989; ). Positive regulation of glutamate biosynthesis in Bacillus subtilis. J Bacteriol 171, 4718–4727.
    [Google Scholar]
  13. Brennan, R. G. & Matthews, B. W. ( 1989; ). The helix-turn-helix DNA binding motif. J Biol Chem 264, 1903–1906.
    [Google Scholar]
  14. Brumbley, S. M., Carney, B. F. & Denny, T. P. ( 1993; ). Phenotype conversion in Pseudomonas solanacearum due to spontaneous inactivation of PhcA, a putative LysR transcriptional regulator. J Bacteriol 175, 5477–5487.
    [Google Scholar]
  15. Buggy, J. J., Sganga, M. W. & Bauer, C. E. ( 1994; ). Nucleotide sequence and characterization of the Rhodobacter capsulatus hvrB gene: HvrB is an activator of S-adenosyl-l-homocysteine hydrolase expression and is a member of the LysR family. J Bacteriol 176, 61–69.
    [Google Scholar]
  16. Burn, J. E., Hamilton, W. D., Wooton, J. C. & Johnston, A. W. ( 1989; ). Single and multiple mutations affecting properties of the regulatory gene nodD of Rhizobium. Mol Microbiol 3, 1567–1577.[CrossRef]
    [Google Scholar]
  17. Byrne, G. A., Russell, D. A., Chen, X. & Meijer, W. G. ( 2007; ). Transcriptional regulation of the virR operon of the intracellular pathogen Rhodococcus equi. J Bacteriol 189, 5082–5089.[CrossRef]
    [Google Scholar]
  18. Caldwell, A. L. & Gulig, P. A. ( 1991; ). The Salmonella typhimurium virulence plasmid encodes a positive regulator of a plasmid-encoded virulence gene. J Bacteriol 173, 7176–7185.
    [Google Scholar]
  19. Cao, H., Krishnan, G., Goumnerov, B., Tsongalis, J., Tompkins, R. & Rahme, L. G. ( 2001; ). A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism. Proc Natl Acad Sci U S A 98, 14613–14618.[CrossRef]
    [Google Scholar]
  20. Cebolla, A., Sousa, C. & de Lorenzo, V. ( 1997; ). Effector specificity mutants of the transcriptional activator NahR of naphthalene degrading Pseudomonas define protein sites involved in binding of aromatic inducers. J Biol Chem 272, 3986–3992.[CrossRef]
    [Google Scholar]
  21. Celis, R. T. ( 1999; ). Repression and activation of arginine transport genes in Escherichia coli K 12 by the ArgP protein. J Mol Biol 294, 1087–1095.[CrossRef]
    [Google Scholar]
  22. Chen, J. M., Islam, S. T., Ren, H. & Liu, J. ( 2007; ). Differential productions of lipid virulence factors among BCG vaccine strains and implications on BCG safety. Vaccine 25, 8114–8122.[CrossRef]
    [Google Scholar]
  23. Christman, M. F., Storz, G. & Ames, B. N. ( 1989; ). OxyR, a positive regulator of hydrogen peroxide-inducible genes in Escherichia coli and Salmonella typhimurium, is homologous to a family of bacterial regulatory proteins. Proc Natl Acad Sci U S A 86, 3484–3488.[CrossRef]
    [Google Scholar]
  24. Chugani, S. A., Parsek, M. R. & Chakrabarty, A. M. ( 1998; ). Transcriptional repression mediated by LysR-type regulator CatR bound at multiple binding sites. J Bacteriol 180, 2367–2372.
    [Google Scholar]
  25. Clark, T., Haddad, S., Neidle, E. & Momany, C. ( 2003; ). Crystallization of the effector-binding domains of BenM and CatM, LysR-type transcriptional regulators from Acinetobacter sp. ADP1. Acta Crystallogr D Biol Crystallogr 60, 105–108.
    [Google Scholar]
  26. Coco, W. M., Rothmel, R. K., Henikoff, S. & Chakrabarty, A. M. ( 1993; ). Nucleotide sequence and initial functional characterization of the clcR gene encoding a LysR family activator of the clcABD chlorocatechol operon in Pseudomonas putida. J Bacteriol 175, 417–427.
    [Google Scholar]
  27. Collier, L. S., Gaines, G. L. & Neidle, E. L. ( 1998; ). Regulation of benzoate degradation in Acinetobacter sp. strain ADP1 by BenM, a LysR-type transcriptional activator. J Bacteriol 180, 2493–2501.
    [Google Scholar]
  28. Colyer, T. E. & Kredich, N. M. ( 1994; ). Residue threonine-149 of the Salmonella typhimurium CysB transcription activator: mutations causing constitutive expression of positively regulated genes of the cysteine regulon. Mol Microbiol 13, 797–805.[CrossRef]
    [Google Scholar]
  29. Colyer, T. E. & Kredich, N. M. ( 1996; ). In vitro characterisation of constitutive CysB proteins from Salmonella typhimurium. Mol Microbiol 21, 247–256.[CrossRef]
    [Google Scholar]
  30. Deghmane, A. E., Petit, S., Topilko, A., Pereira, Y., Giorgini, D., Larribe, M. & Taha, M. K. ( 2000; ). Intimate adhesion of Neisseria meningitidis to human epithelial cells is under the control of the crgA gene, a novel LysR-type transcriptional regulator. EMBO J 19, 1068–1078.[CrossRef]
    [Google Scholar]
  31. Deghmane, A. E., Giorgini, D., Larribe, M., Alonso, J. M. & Taha, M. K. ( 2002; ). Down-regulation of pili and capsule of Neisseria meningitidis upon contact with epithelial cells is mediated by CrgA regulatory protein. Mol Microbiol 43, 1555–1564.[CrossRef]
    [Google Scholar]
  32. Delic-Attree, I., Toussaint, B., Garin, J. & Vignais, P. M. ( 1997; ). Cloning, sequence and mutagenesis of the structural gene of Pseudomonas aeruginosa CysB, which can activate algD transcription. Mol Microbiol 24, 1275–1284.[CrossRef]
    [Google Scholar]
  33. Dover, N. & Padan, E. ( 2001; ). Transcription of nhaA, the main Na+/H+ antiporter of Escherichia coli, is regulated by Na+ and growth phase. J Bacteriol 183, 644–653.[CrossRef]
    [Google Scholar]
  34. Dubbs, J. M. & Tabita, F. R. ( 2003; ). Interactions of the cbbII promoter-operator region with CbbR and RegA (PrrA) regulators indicate distinct mechanisms to control expression of the two cbb operons of Rhodobacter sphaeroides. J Biol Chem 278, 16443–16450.[CrossRef]
    [Google Scholar]
  35. Dubbs, P., Dubbs, J. M. & Tabita, F. R. ( 2004; ). Effector-mediated interaction of CbbRI and CbbRII regulators with target sequences in Rhodobacter capsulatus. J Bacteriol 186, 8026–8035.[CrossRef]
    [Google Scholar]
  36. Ezezika, O. C., Collier-Hyams, L. S., Dale, H. A., Burk, A. C. & Neidle, E. L. ( 2006; ). CatM regulation of the benABCDE operon: functional divergence of two LysR-type paralogs in Acinetobacter baylyi ADP1. Appl Environ Microbiol 72, 1749–1758.[CrossRef]
    [Google Scholar]
  37. Ezezika, O. C., Haddad, S., Clark, T. J., Neidle, E. L. & Momany, C. ( 2007; ). Distinct effector-binding sites enable synergistic transcriptional activation by BenM, a LysR-type regulator. J Mol Biol 367, 616–629.[CrossRef]
    [Google Scholar]
  38. Farr, S. B. & Kogoma, T. ( 1991; ). Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Rev 55, 561–585.
    [Google Scholar]
  39. Gibson, K. E. & Silhavy, T. J. ( 1999; ). The LysR homolog LrhA promotes RpoS degradation by modulating activity of the response regulator sprE. J Bacteriol 181, 563–571.
    [Google Scholar]
  40. Gibson, J. L. & Tabita, F. R. ( 1993; ). Nucleotide sequence and functional analysis of cbbR, a positive regulator of the Calvin cycle operons of Rhodobacter sphaeroides. J Bacteriol 175, 5778–5784.
    [Google Scholar]
  41. Goethals, K., Van Montagu, M. & Holsters, M. ( 1992; ). Conserved motifs in a divergent nod box of Azorhizobium caulinodans ORS571 reveal a common structure in promoters regulated by LysR-type proteins. Proc Natl Acad Sci U S A 89, 1646–1650.[CrossRef]
    [Google Scholar]
  42. Goldberg, M. B., Boyko, S. A. & Calderwood, S. B. ( 1991; ). Positive transcriptional regulation of an iron-regulated virulence gene in Vibrio cholerae. Proc Natl Acad Sci U S A 88, 1125–1129.[CrossRef]
    [Google Scholar]
  43. Goosen, N. & van de Putte, P. ( 1995; ). The regulation of transcription initiation by integration host factor. Mol Microbiol 16, 1–7.[CrossRef]
    [Google Scholar]
  44. Graham, M. R., Virtaneva, K., Porcella, S. F., Gardner, D. J., Long, R. D., Welty, D. M., Barry, W. T., Johnson, C. A., Parkins, L. D. & other authors ( 2006; ). Analysis of the transcriptome of group A Streptococcus in mouse soft tissue infection. Am J Pathol 169, 927–942.[CrossRef]
    [Google Scholar]
  45. Groisman, E. A., Kayser, J. & Soncini, F. C. ( 1997; ). Regulation of polymyxin resistance and adaptation to low-Mg2+ environments. J Bacteriol 179, 7040–7045.
    [Google Scholar]
  46. Guillouard, I., Auger, S., Hullo, M. F., Chetouani, F., Danchin, A. & Martin-Verstraete, I. ( 2002; ). Identification of Bacillus subtilis CysL, a regulator of the cysJI operon, which encodes sulfite reductase. J Bacteriol 184, 4681–4689.[CrossRef]
    [Google Scholar]
  47. Gunn, J. S. & Miller, S. I. ( 1996; ). PhoP-PhoQ activates transcription of pmrAB, encoding a two-component regulatory system involved in Salmonella typhimurium antimicrobial peptide resistance. J Bacteriol 178, 6857–6864.
    [Google Scholar]
  48. Habeeb, L. F., Wang, L. & Winans, S. C. ( 1991; ). Transcription of the octopine catabolism operon of the Agrobacterium tumor-inducing plasmid pTiA6 is activated by a LysR-type regulatory protein. Mol Plant Microbe Interact 4, 379–385.[CrossRef]
    [Google Scholar]
  49. Henikoff, S., Haughn, G. W., Calvo, J. M. & Wallace, J. C. ( 1988; ). A large family of bacterial activator proteins. Proc Natl Acad Sci U S A 85, 6602–6606.[CrossRef]
    [Google Scholar]
  50. Hernández-Lucas, I., Gallego-Hernández, A. L., Encarnación, S., Fernández-Mora, M., Martínez-Batallar, A. G., Salgado, H., Oropeza, R. & Calva, E. ( 2008; ). The LysR-type transcriptional regulator LeuO controls expression of several genes in Salmonella enterica serovar Typhi. J Bacteriol 190, 1658–1670.[CrossRef]
    [Google Scholar]
  51. Heroven, A. K. & Dersch, P. ( 2006; ). RovM, a novel LysR-type regulator of the virulence activator gene rovA, controls cell invasion, virulence and motility of Yersinia pseudotuberculosis. Mol Microbiol 62, 1469–1483.[CrossRef]
    [Google Scholar]
  52. Heroven, A. K., Bohme, K., Tran-Winkler, H. & Dersch, P. ( 2007; ). Regulatory elements implicated in the environmental control of invasin expression in enteropathic Yersinia. Adv Exp Med Biol 603, 156–166.
    [Google Scholar]
  53. Horken, K. M. & Tabita, F. R. ( 1999; ). The “green” form I ribulose 1,5-bisphosphate carboxylase/oxygenase from the nonsulfur purple bacterium Rhodobacter capsulatus. J Bacteriol 181, 3935–3941.
    [Google Scholar]
  54. Hryniewicz, M. M. & Kredich, N. M. ( 1994; ). Stoichiometry of binding of CysB to the cysJIH, cysK, and cysP promoter regions of Salmonella typhimurium. J Bacteriol 176, 3673–3682.
    [Google Scholar]
  55. Huang, J. Z. & Schell, M. A. ( 1991; ). In vivo interactions of the NahR transcriptional activator with its target sequences. Inducer-mediated changes resulting in transcription activation. J Biol Chem 266, 10830–10838.
    [Google Scholar]
  56. Huffman, J. L. & Brennan, R. G. ( 2002; ). Prokaryotic transcription regulators: more than just the helix-turn-helix motif. Curr Opin Struct Biol 12, 98–106.[CrossRef]
    [Google Scholar]
  57. Huo, Y. X., Nan, B. Y., You, C. H., Tian, Z. X., Kolb, A. & Wang, Y. P. ( 2006; ). FIS activates glnAp2 in Escherichia coli: role of a DNA bend centered at −55, upstream of the transcription start site. FEMS Microbiol Lett 257, 99–105.[CrossRef]
    [Google Scholar]
  58. Jones, R. M., Britt-Compton, B. & Williams, P. A. ( 2003; ). The naphthalene catabolic (nag) genes of Ralstonia sp. strain U2 are an operon that is regulated by NagR, a LysR-type transcriptional regulator. J Bacteriol 185, 5847–5853.[CrossRef]
    [Google Scholar]
  59. Jørgensen, C. & Dandanell, G. ( 1999; ). Isolation and characterization of mutations in the Escherichia coli regulatory protein XapR. J Bacteriol 181, 4397–4403.
    [Google Scholar]
  60. Jourlin-Castelli, C., Mani, N., Nakano, M. M. & Sonenshein, A. L. ( 2000; ). CcpC, a novel regulator of the LysR family required for glucose repression of the citB gene in Bacillus subtilis. J Mol Biol 295, 865–878.[CrossRef]
    [Google Scholar]
  61. Jovanovic, M., Lilic, M., Savic, J. & Jovanovic, G. ( 2003; ). The LysR-type transcriptional regulator CysB controls the repression of hslJ transcription in Escherichia coli. Microbiology 149, 3449–3459.[CrossRef]
    [Google Scholar]
  62. Keller, P. M., Böttger, E. C. & Sander, P. ( 2008; ). Tuberculosis vaccine strain Mycobacterium bovis BCG Russia is a natural recA mutant. BMC Microbiol 8, 120 [CrossRef]
    [Google Scholar]
  63. Kim, H. J., Jourlin-Castelli, C., Kim, S. I. & Sonenshein, A. L. ( 2002; ). Regulation of the Bacillus subtilis ccpC gene by CcpA and CcpC. Mol Microbiol 43, 399–410.[CrossRef]
    [Google Scholar]
  64. Kim, S. I., Jourlin-Castelli, C., Wellington, S. R. & Sonenshein, A. L. ( 2003; ). Mechanism of repression by Bacillus subtilis CcpC, a LysR family regulator. J Mol Biol 334, 609–624.[CrossRef]
    [Google Scholar]
  65. Kim, J., Kim, J. G., Kang, Y., Jang, J. Y., Jog, G. J., Lim, J. Y., Kim, S., Suga, H., Nagamatsu, T. & Hwang, I. ( 2004; ). Quorum sensing and the LysR-type transcriptional activator ToxR regulate toxoflavin biosynthesis and transport in Burkholderia glumae. Mol Microbiol 54, 921–934.[CrossRef]
    [Google Scholar]
  66. Kovacikova, G. & Skorupski, K. ( 1999; ). A Vibrio cholerae LysR homolog, AphB, cooperates with AphA at the tcpPH promoter to activate expression of the ToxR virulence cascade. J Bacteriol 181, 4250–4256.
    [Google Scholar]
  67. Kovaleva, G. Y. & Gelfand, M. S. ( 2007; ). Transcriptional regulation of the methionine and cysteine transport and metabolism in streptococci. FEMS Microbiol Lett 276, 207–215.[CrossRef]
    [Google Scholar]
  68. Kullik, I., Toledano, M. B., Tartaglia, L. A. & Storz, G. ( 1995a; ). Mutational analysis of the redox-sensitive transcriptional regulator OxyR: regions important for oxidation and transcriptional activation. J Bacteriol 177, 1275–1284.
    [Google Scholar]
  69. Kullik, I., Stevens, J., Toledano, M. B. & Storz, G. ( 1995b; ). Mutational analysis of the redox-sensitive transcriptional regulator OxyR: regions important for DNA binding and multimerization. J Bacteriol 177, 1285–1291.
    [Google Scholar]
  70. Lehnen, D., Blumer, C., Polen, T., Wackwitz, B., Wendisch, V. F. & Unden, G. ( 2002; ). LrhA as a new transcriptional key regulator of flagella, motility and chemotaxis genes in Escherichia coli. Mol Microbiol 45, 521–532.[CrossRef]
    [Google Scholar]
  71. Leung, A. S., Tran, V., Wu, Z., Yu, X., Alexander, D. C., Gao, G. F., Zhu, B. & Liu, J. ( 2008; ). Novel genome polymorphisms in BCG vaccine strains and impact on efficacy. BMC Genomics 9, 413 [CrossRef]
    [Google Scholar]
  72. Lindquist, S., Lindberg, F. & Normark, S. ( 1989; ). Binding of the Citrobacter freundii AmpR regulator to a single DNA site provides both autoregulation and activation of the inducible ampC β-lactamase gene. J Bacteriol 171, 3746–3753.
    [Google Scholar]
  73. Litwin, C. M. & Quackenbush, J. ( 2001; ). Characterization of a Vibrio vulnificus LysR homologue, HupR, which regulates expression of the haem uptake outer membrane protein, HupA. Microb Pathog 31, 295–307.[CrossRef]
    [Google Scholar]
  74. Lochowska, A., Iwanicka-Nowicka, R., Plochocka, D. & Hryniewicz, M. M. ( 2001; ). Functional dissection of the LysR-type CysB transcriptional regulator. Regions important for DNA binding, inducer response, oligomerization and positive control. J Biol Chem 276, 2098–2107.[CrossRef]
    [Google Scholar]
  75. Lochowska, A., Iwanicka-Nowicka, R., Zaim, J., Witkowska-Zimny, M. & Hryniewicz, M. M. ( 2004; ). Identification of activating region (AR) of Escherichia coli LysR-type transcription factor CysB and CysB contact site on RNA polymerase alpha subunit at the cysP promoter. Mol Microbiol 53, 791–806.[CrossRef]
    [Google Scholar]
  76. Lönneborg, R., Smirnova, I., Dian, C., Leonard, G. A. & Brzezinski, P. ( 2007; ). In vivo and in vitro investigation of transcriptional regulation by DntR. J Mol Biol 372, 571–582.[CrossRef]
    [Google Scholar]
  77. Lu, Z., Takeuchi, M. & Sato, T. ( 2007; ). The LysR-type transcriptional regulator YofA controls cell division through the regulation of expression of ftsW in Bacillus subtilis. J Bacteriol 189, 5642–5651.[CrossRef]
    [Google Scholar]
  78. Malakooti, J. & Ely, B. ( 1994; ). Identification and characterization of the ilvR gene encoding a LysR-type regulator of Caulobacter crescentus. J Bacteriol 176, 1275–1281.
    [Google Scholar]
  79. Martin, R. G. & Rosner, J. L. ( 1997; ). Fis, an accessorial factor for transcriptional activation of the mar (multiple antibiotic resistance) promoter of Escherichia coli in the presence of the activator MarA, SoxS, or Rob. J Bacteriol 179, 7410–7419.
    [Google Scholar]
  80. McIver, J., Djordjevic, M. A., Weinman, J. J., Bender, G. L. & Rolfe, B. G. ( 1989; ). Extension of host range of Rhizobium leguminosarum bv. trifolii caused by point mutations in nodD that result in alterations in regulatory function and recognition of inducer molecules. Mol Plant Microbe Interact 2, 97–106.[CrossRef]
    [Google Scholar]
  81. Muraoka, S., Okumura, R., Ogawa, N., Nonaka, T., Miyashita, K. & Senda, T. ( 2003a; ). Crystal structure of a full-length LysR-type transcriptional regulator, CbnR: unusual combination of two subunit forms and molecular bases for causing and changing DNA bend. J Mol Biol 328, 555–566.[CrossRef]
    [Google Scholar]
  82. Muraoka, S., Okumura, R., Uragami, Y., Nonaka, T., Ogawa, N., Miyashita, K. & Senda, T. ( 2003b; ). Purification and crystallization of a LysR-type transcriptional regulator CbnR from Ralstonia eutropha NH9. Protein Pept Lett 10, 325–329.[CrossRef]
    [Google Scholar]
  83. Nandineni, M. R. & Gowrishankar, J. ( 2004; ). Evidence for an arginine exporter encoded by yggA (argO) that is regulated by the LysR-type transcriptional regulator ArgP in Escherichia coli. J Bacteriol 186, 3539–3546.[CrossRef]
    [Google Scholar]
  84. Neidle, E. L., Hartnett, C. & Ornston, N. ( 1989; ). Characterization of Acinetobacter calcoaceticus catM, a repressor gene homologous in sequence to transcriptional activator genes. J Bacteriol 171, 5410–5421.
    [Google Scholar]
  85. Ogawa, N., McFall, S. M., Klem, T. J., Miyashita, K. & Chakrabarty, A. M. ( 1999; ). Transcriptional activation of the chlorocatechol degradative genes of Ralstonia eutropha NH9. J Bacteriol 181, 6697–6705.
    [Google Scholar]
  86. Paoli, G. C., Soyer, F., Shively, J. & Tabita, F. R. ( 1998; ). Rhodobacter capsulatus genes encoding form I ribulose-1,5-bisphosphate carboxylase/oxygenase (cbbLS) and neighbouring genes were acquired by a horizontal gene transfer. Microbiology 144, 219–227.[CrossRef]
    [Google Scholar]
  87. Park, W., Jeon, C. O. & Madsen, E. L. ( 2002; ). Interaction of NahR, a LysR-type transcriptional regulator, with the alpha subunit of RNA polymerase in the naphthalene degrading bacterium, Pseudomonas putida NCIB 9816-4. FEMS Microbiol Lett 213, 159–165.
    [Google Scholar]
  88. Parsek, M. R., McFall, S. M., Shinabarger, D. L. & Chakrabarty, A. M. ( 1994a; ). Interaction of two LysR-type regulatory proteins CatR and ClcR with heterologous promoters: functional and evolutionary implications. Proc Natl Acad Sci U S A 91, 12393–12397.[CrossRef]
    [Google Scholar]
  89. Parsek, M. R., Ye, R. W., Pun, P. & Chakrabarty, A. M. ( 1994b; ). Critical nucleotides in the interaction of a LysR-type regulator with its target promoter region. catBC promoter activation by CatR. J Biol Chem 269, 11279–11284.
    [Google Scholar]
  90. Peng, H. L., Shiou, S. R. & Chang, H. Y. ( 1999; ). Characterization of mdcR, a regulatory gene of the malonate catabolic system in Klebsiella pneumoniae. J Bacteriol 181, 2302–2306.
    [Google Scholar]
  91. Pérez-Martín, J. & de Lorenzo, V. ( 1997; ). Clues and consequences of DNA bending in transcription. Annu Rev Microbiol 51, 593–628.[CrossRef]
    [Google Scholar]
  92. Pérez-Rueda, E. & Collado-Vides, J. ( 2000; ). The repertoire of DNA-binding transcriptional regulators in Escherichia coli K-12. Nucleic Acids Res 28, 1838–1847.[CrossRef]
    [Google Scholar]
  93. Pérez-Rueda, E. & Collado-Vides, J. ( 2001; ). Common history at the origin of the position-function correlation in transcriptional regulators in archaea and bacteria. J Mol Evol 53, 172–179.[CrossRef]
    [Google Scholar]
  94. Picossi, S., Belitsky, B. R. & Sonenshein, A. L. ( 2007; ). Molecular mechanism of the regulation of Bacillus subtilis gltAB expression by GltC. J Mol Biol 365, 1298–1313.[CrossRef]
    [Google Scholar]
  95. Porrúa, O., García-Jaramillo, M., Santero, E. & Govantes, F. ( 2007; ). The LysR-type regulator AtzR binding site: DNA sequences involved in activation, repression and cyanuric acid-dependent repositioning. Mol Microbiol 66, 410–427.[CrossRef]
    [Google Scholar]
  96. Raskin, C., Gérard, C., Donfut, S., Giannotta, E., Van Driessche, G., Van Beeumen, J. & Dusart, J. ( 2003; ). BlaB, a protein involved in the regulation of Streptomyces cacaoi β-lactamases, is a penicillin-binding protein. Cell Mol Life Sci 60, 1460–1469.[CrossRef]
    [Google Scholar]
  97. Renault, P., Gaillardin, C. & Heslot, H. ( 1989; ). Product of the Lactococcus lactis gene required for malolactic fermentation is homologous to a family of positive regulators. J Bacteriol 171, 3108–3114.
    [Google Scholar]
  98. Renna, M. C., Najimudin, N., Winik, L. R. & Zahler, S. A. ( 1993; ). Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin. J Bacteriol 175, 3863–3875.
    [Google Scholar]
  99. Rhee, K. Y., Opel, M., Ito, E., Hung, S., Arfin, S. M. & Hatfield, G. W. ( 1999; ). Transcriptional coupling between the divergent promoters of a prototypic LysR-type regulatory system, the ilvYC operon of Escherichia coli. Proc Natl Acad Sci U S A 96, 14294–14299.[CrossRef]
    [Google Scholar]
  100. Ritz, N., Hanekom, W. A., Robins-Browne, R., Britton, W. J. & Curtis, N. ( 2008; ). Influence of BCG vaccine strain on the immune response and protection against tuberculosis. FEMS Microbiol Rev 32, 821–841.[CrossRef]
    [Google Scholar]
  101. Romero-Arroyo, C. E., Schell, M. A., Gaines, G. L. & Neidle, E. L. ( 1995; ). catM encodes a LysR-type transcriptional activator regulating catechol degradation in Acinetobacter calcoaceticus. J Bacteriol 177, 5891–5898.
    [Google Scholar]
  102. Russell, D. A., Byrne, G. A., O'Connell, E. P., Boland, C. A. & Meijer, W. G. ( 2004; ). The LysR-type transcriptional regulator VirR is required for expression of the virulence gene vapA of Rhodococcus equi ATCC 33701. J Bacteriol 186, 5576–5584.[CrossRef]
    [Google Scholar]
  103. Schell, M. A. ( 1993; ). Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol 47, 597–626.[CrossRef]
    [Google Scholar]
  104. Schell, M. A., Brown, P. H. & Raju, S. ( 1990; ). Use of saturation mutagenesis to localize probable functional domains in the NahR protein, a LysR-type transcription activator. J Biol Chem 265, 3844–3850.
    [Google Scholar]
  105. Schlaman, H. R., Lugtenberg, B. J. & Okker, R. J. ( 1992a; ). The NodD protein does not bind to the promoters of inducible nodulation genes in extracts of bacteroids of Rhizobium leguminosarum biovar viciae. J Bacteriol 174, 6109–6116.
    [Google Scholar]
  106. Schlaman, H. R., Okker, R. J. & Lugtenberg, B. J. ( 1992b; ). Regulation of nodulation gene expression by NodD in rhizobia. J Bacteriol 174, 5177–5182.
    [Google Scholar]
  107. Sheehan, B. J. & Dorman, C. J. ( 1998; ). In vivo analysis of the interactions of the LysR-like regulator SpvR with the operator sequences of the spvA and spvR virulence genes of Salmonella typhimurium. Mol Microbiol 30, 91–105.[CrossRef]
    [Google Scholar]
  108. Shelver, D., Rajagopal, L., Harris, T. O. & Rubens, C. E. ( 2003; ). MtaR, a regulator of methionine transport, is critical for survival of group B streptococcus in vivo. J Bacteriol 185, 6592–6599.[CrossRef]
    [Google Scholar]
  109. Smirnova, I. A., Dian, C., Leonard, G. A., McSweeney, S., Birse, D. & Brzezinski, P. ( 2004; ). Development of a bacterial biosensor for nitrotoluenes: the crystal structure of the transcriptional regulator DntR. J Mol Biol 340, 405–418.[CrossRef]
    [Google Scholar]
  110. Smith, S. A. & Tabita, F. R. ( 2002; ). Up-regulated expression of the cbb(I) and cbb(II) operons during photoheterotrophic growth of a ribulose 1,5-bisphosphate carboxylase-oxygenase deletion mutant of Rhodobacter sphaeroides. J Bacteriol 184, 6721–6724.[CrossRef]
    [Google Scholar]
  111. Sperandio, V., Li, C. C. & Kaper, J. B. ( 2002; ). Quorum-sensing Escherichia coli regulator A: a regulator of the LysR family involved in the regulation of the locus of enterocyte effacement pathogenicity island in enterohemorrhagic E. coli. Infect Immun 70, 3085–3093.[CrossRef]
    [Google Scholar]
  112. Sperandio, B., Gautier, C., McGovern, S., Ehrlich, D. S., Renault, P., Martin-Verstraete, I. & Guédon, E. ( 2007; ). Control of methionine synthesis and uptake by MetR and homocysteine in Streptococcus mutans. J Bacteriol 189, 7032–7044.[CrossRef]
    [Google Scholar]
  113. Spreadbury, C. L., Pallen, M. J., Overton, T., Behr, M. A., Mostowy, S., Spiro, S., Busby, S. J. & Cole, J. A. ( 2005; ). Point mutations in the DNA- and cNMP-binding domains of the homologue of the cAMP receptor protein (CRP) in Mycobacterium bovis BCG: implications for the inactivation of a global regulator and strain attenuation. Microbiology 151, 547–556.[CrossRef]
    [Google Scholar]
  114. Stec, E., Witkowska-Zimny, M., Hryniewicz, M. M., Neumann, P., Wilkinson, A. J., Brzozowski, A. M., Verma, C. S., Zaim, J., Wysocki, S. & Bujacz, G. D. ( 2006; ). Structural basis of the sulphate starvation response in E. coli: crystal structure and mutational analysis of the cofactor-binding domain of the Cbl transcriptional regulator. J Mol Biol 364, 309–322.[CrossRef]
    [Google Scholar]
  115. Storz, G., Tartaglia, L. A. & Ames, B. N. ( 1990; ). The OxyR regulon. Antonie Van Leeuwenhoek 58, 157–161.[CrossRef]
    [Google Scholar]
  116. Stragier, P. & Patte, J. C. ( 1983; ). Regulation of diaminopimelate decarboxylase synthesis in Escherichia coli. III. Nucleotide sequence and regulation of the lysR gene. J Mol Biol 168, 333–350.[CrossRef]
    [Google Scholar]
  117. Stragier, P., Richaud, F., Borne, F. & Patte, J. C. ( 1983; ). Regulation of diaminopimelate decarboxylase synthesis in Escherichia coli. I. Identification of a lysR gene encoding an activator of the lysA gene. J Mol Biol 168, 307–320.[CrossRef]
    [Google Scholar]
  118. Sun, J. & Klein, A. ( 2004; ). A LysR-type regulator is involved in the negative regulation of genes encoding selenium-free hydrogenases in the archaeon Methanococcus voltae. Mol Microbiol 52, 563–571.[CrossRef]
    [Google Scholar]
  119. Sung, Y. C. & Fuchs, J. A. ( 1992; ). The Escherichia coli K-12 cyn operon is positively regulated by a member of the lysR family. J Bacteriol 174, 3645–3650.
    [Google Scholar]
  120. Suzuki, K., Uchiyama, T., Suzuki, M., Nikaidou, N., Regue, M. & Watanabe, T. ( 2001; ). LysR-type transcriptional regulator ChiR is essential for production of all chitinases and a chitin-binding protein, CBP21, in Serratia marcescens 2170. Biosci Biotechnol Biochem 65, 338–347.[CrossRef]
    [Google Scholar]
  121. Toleman, M. A., Simm, A. M., Murphy, T. A., Gales, A. C., Biedenbach, D. J., Jones, R. N. & Walsh, T. R. ( 2002; ). Molecular characterization of SPM-1, a novel metallo-β-lactamase isolated in Latin America: report from the SENTRY antimicrobial surveillance programme. J Antimicrob Chemother 50, 673–679.[CrossRef]
    [Google Scholar]
  122. Tropel, D. & van der Meer, J. R. ( 2004; ). Bacterial transcriptional regulators for degradation of aromatic compounds. Microbiol Mol Biol Rev 68, 474–500.[CrossRef]
    [Google Scholar]
  123. van der Meer, J. R., Frijters, A. C., Leveau, J. H., Eggen, R. I., Zehnder, A. J. & de Vos, W. M. ( 1991; ). Characterization of the Pseudomonas sp. strain P51 gene tcbR, a LysR-type transcriptional activator of the tcbCDEF chlorocatechol oxidative operon, and analysis of the regulatory region. J Bacteriol 173, 3700–3708.
    [Google Scholar]
  124. van der Ploeg, J. R., Iwanicka-Nowicka, R., Kertesz, M. A., Leisinger, T. & Hryniewicz, M. M. ( 1997; ). Involvement of CysB and Cbl regulatory proteins in expression of the tauABCD operon and other sulfate starvation-inducible genes in Escherichia coli. J Bacteriol 179, 7671–7678.
    [Google Scholar]
  125. van Keulen, G., Girbal, L., van den Bergh, E. R., Dijkhuizen, L. & Meijer, W. G. ( 1998; ). The LysR-type transcriptional regulator CbbR controlling autotrophic CO2 fixation by Xanthobacter flavus is an NADPH sensor. J Bacteriol 180, 1411–1417.
    [Google Scholar]
  126. van Keulen, G., Ridder, A. N., Dijkhuizen, L. & Meijer, W. G. ( 2003; ). Analysis of DNA binding and transcriptional activation by the LysR-type transcriptional regulator CbbR of Xanthobacter flavus. J Bacteriol 185, 1245–1252.[CrossRef]
    [Google Scholar]
  127. Verschueren, K. H., Addy, C., Dodson, E. J. & Wilkinson, A. J. ( 2001; ). Crystallization of full-length CysB of Klebsiella aerogenes, a LysR-type transcriptional regulator. Acta Crystallogr D Biol Crystallogr 57, 260–262.[CrossRef]
    [Google Scholar]
  128. Viale, A. M., Kobayashi, H., Akazawa, T. & Henikoff, S. ( 1991; ). rbcR, a gene coding for a member of the LysR family of transcriptional regulators, is located upstream of the expressed set of ribulose 1,5-bisphosphate carboxylase/oxygenase genes in the photosynthetic bacterium Chromatium vinosum. J Bacteriol 173, 5224–5229.
    [Google Scholar]
  129. Virtaneva, K., Porcella, S. F., Graham, M. R., Ireland, R. M., Johnson, C. A., Ricklefs, S. M., Babar, I., Parkins, L. D., Romero, R. A. & other authors ( 2005; ). Longitudinal analysis of the group A Streptococcus transcriptome in experimental pharyngitis in cynomolgus macaques. Proc Natl Acad Sci U S A 102, 9014–9019.[CrossRef]
    [Google Scholar]
  130. Viswanathan, P., Ueki, T., Inouye, S. & Kroos, L. ( 2007; ). Combinatorial regulation of genes essential for Myxococcus xanthus development involves a response regulator and a LysR-type regulator. Proc Natl Acad Sci U S A 104, 7969–7974.[CrossRef]
    [Google Scholar]
  131. von Lintig, J., Kreusch, D. & Schröder, J. ( 1994; ). Opine-regulated promoters and LysR-type regulators in the nopaline (noc) and octopine (occ) catabolic regions of Ti plasmids of Agrobacterium tumefaciens. J Bacteriol 176, 495–503.
    [Google Scholar]
  132. Wek, R. C. & Hatfield, G. W. ( 1988; ). Transcriptional activation at adjacent operators in the divergent-overlapping ilvY and ilvC promoters of Escherichia coli. J Mol Biol 203, 643–663.[CrossRef]
    [Google Scholar]
  133. Wilkinson, S. P. & Grove, A. ( 2006; ). Ligand-responsive transcriptional regulation by members of the MarR family of winged helix proteins. Curr Issues Mol Biol 8, 51–62.
    [Google Scholar]
  134. Wilson, R. L., Urbanowski, M. L. & Stauffer, G. V. ( 1995; ). DNA binding sites of the LysR-type regulator GcvA in the gcv and gcvA control regions of Escherichia coli. J Bacteriol 177, 4940–4946.
    [Google Scholar]
  135. Windhövel, U. & Bowien, B. ( 1991; ). Identification of cfxR, an activator gene of autotrophic CO2 fixation in Alcaligenes eutrophus. Mol Microbiol 5, 2695–2705.[CrossRef]
    [Google Scholar]
  136. Yang, S. J., Rice, K. C., Brown, R. J., Patton, T. G., Liou, L. E., Park, Y. H. & Bayles, K. W. ( 2005; ). A LysR-type regulator, CidR, is required for induction of the Staphylococcus aureus cidABC operon. J Bacteriol 187, 5893–5900.[CrossRef]
    [Google Scholar]
  137. Zaim, J. & Kierzek, A. M. ( 2003; ). The structure of full-length LysR-type transcriptional regulators. Modeling of the full-length OxyR transcription factor dimer. Nucleic Acids Res 31, 1444–1454.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/022772-0
Loading
/content/journal/micro/10.1099/mic.0.2008/022772-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error