1887

Abstract

(Sacc.) Nirenberg (teleomorph Wineland) is one of the key pathogens of maize stalk rot disease. However, a clear understanding of stalk rot pathogenesis is still lacking. Previously, we identified the gene, which plays a key role in fungal virulence and sexual mating. The predicted Fsr1 protein contains multiple protein-binding domains, namely a caveolin-binding domain, a coiled-coil structure, and a calmodulin-binding motif at the N terminus and a WD40 repeat domain at the C terminus. Fsr1 shares significant similarity to a family of striatin proteins that play a critical role in cellular mechanisms that regulate a variety of developmental processes. Significantly, function is conserved in , where it also plays a direct role in pathogenesis. In this study, our goal was to determine the motif(s) in Fsr1 that are directly associated with fungal virulence. We complemented the knockout (Δ) strain with mutated versions of the gene, and determined that the Fsr1 C-terminal WD40 repeat domain is dispensable for vegetative growth and maize stalk rot virulence. We also examined the potential link between -mediated virulence and cell wall-degrading enzyme (-amylase, pectinase and cellulase) activities. Further characterization of the N-terminal region revealed that the coiled-coil structure is essential for virulence in . The coiled-coil domain is involved in a variety of protein–protein interactions in eukaryotic systems, and thus we hypothesize that the interaction between Fsr1 and the putative Fsr1-binding protein triggers downstream gene signalling that is associated with virulence.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/016782-0
2008-06-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/6/1637.html?itemId=/content/journal/micro/10.1099/mic.0.2008/016782-0&mimeType=html&fmt=ahah

References

  1. Bartoli, M., Monneron, A. & Ladant, D. ( 1998; ). Interaction of calmodulin with striatin, a WD-repeat protein present in neuronal dendritic spines. J Biol Chem 273, 22248–22253.[CrossRef]
    [Google Scholar]
  2. Benoist, M., Gaillard, S. & Castets, F. ( 2006; ). The striatin family: a new signaling platform in dendritic spines. J Physiol (Paris) 99, 146–153.[CrossRef]
    [Google Scholar]
  3. Bluhm, B. H. & Woloshuk, C. P. ( 2005; ). Amylopectin induces fumonisin B1 production by Fusarium verticillioides during colonization of maize kernels. Mol Plant Microbe Interact 18, 1333–1339.[CrossRef]
    [Google Scholar]
  4. Bortoli-German, I., Brun, E., Py, B., Chippaux, M. & Barras, F. ( 1994; ). Periplasmic disulphide bond formation is essential for cellulase secretion by the plant pathogen Erwinia chrysanthemi. Mol Microbiol 11, 545–553.[CrossRef]
    [Google Scholar]
  5. Castets, F., Bartoli, M., Barnier, J. V., Baillat, G., Salin, P., Moqrich, A., Bourgeois, J. P., Denizot, F., Rougon, G. & other authors ( 1996; ). A novel calmodulin-binding protein, belonging to the WD-repeat family, is localized in dendrites of a subset of CNS neurons. J Cell Biol 134, 1051–1062.[CrossRef]
    [Google Scholar]
  6. Castets, F., Rakitina, T., Gaillard, S., Moqrich, A., Mattei, M. G. & Monneron, A. ( 2000; ). Zinedin, SG2NA, and striatin are calmodulin-binding, WD repeat proteins principally expressed in the brain. J Biol Chem 275, 19970–19977.[CrossRef]
    [Google Scholar]
  7. Chen, H. W., Marinissen, M. J., Oh, S. W., Chen, X., Melnick, M., Perrimon, N., Gutkind, J. S. & Hou, S. X. ( 2002; ). CKA, a novel multidomain protein, regulates the JUN N-terminal kinase signal transduction pathway in Drosophila. Mol Cell Biol 22, 1792–1803.[CrossRef]
    [Google Scholar]
  8. Cui, W., Beever, R. E., Parkes, S. L., Weeds, P. L. & Templeton, M. D. ( 2002; ). An osmosensing histidine kinase mediates dicarboximide fungicide resistance in Botryotinia fuckeliana (Botrytis cinerea). Fungal Genet Biol 36, 187–198.[CrossRef]
    [Google Scholar]
  9. Desjardins, A. E., Munkvold, G. P., Plattner, R. D. & Proctor, R. H. ( 2002; ). FUM1 – a gene required for fumonisin biosynthesis but not for maize ear rot and ear infection by Gibberella moniliformis in field tests. Mol Plant Microbe Interact 15, 1157–1164.[CrossRef]
    [Google Scholar]
  10. Di Pietro, A. & Roncero, M. I. ( 1998; ). Cloning, expression, and role in pathogenicity of pg1 encoding the major extracellular endopolygalacturonase of the vascular wilt pathogen Fusarium oxysporum. Mol Plant Microbe Interact 11, 91–98.[CrossRef]
    [Google Scholar]
  11. Flaherty, J. E., Pirttila, A. M., Bluhm, B. H. & Woloshuk, C. P. ( 2003; ). PAC1, a pH-regulatory gene from Fusarium verticillioides. Appl Environ Microbiol 69, 5222–5227.[CrossRef]
    [Google Scholar]
  12. Gaillard, S., Bailly, Y., Benoist, M., Rakitina, T., Kessler, J. P., Fronzaroli-Molinieres, L., Dargent, B. & Castets, F. ( 2006; ). Targeting of proteins of the striatin family to dendritic spines: role of the coiled-coil domain. Traffic 7, 74–84.[CrossRef]
    [Google Scholar]
  13. Ganem, S., Lu, S. W., Lee, B. N., Chou, D. Y. T., Hadar, R., Turgeon, B. G. & Horwitz, B. A. ( 2004; ). G-protein beta subunit of Cochliobolus heterostrophus involved in virulence, asexual and sexual reproductive ability, and morphogenesis. Eukaryot Cell 3, 1653–1663.[CrossRef]
    [Google Scholar]
  14. Garcia-Maceira, F. I., Di Pietro, A., Huertas-Gonzalez, M. D., Ruiz-Roldan, M. C. & Roncero, M. I. ( 2001; ). Molecular characterization of an endopolygalacturonase from Fusarium oxysporum expressed during early stages of infection. Appl Environ Microbiol 67, 2191–2196.[CrossRef]
    [Google Scholar]
  15. Gough, C. L., Dow, J. M., Barber, C. E. & Daniels, M. J. ( 1988; ). Cloning of two endoglucanase genes of Xanthomonas campestris pv campestris: analysis of the role of the major endoglucanase in pathogenesis. Mol Plant Microbe Interact 1, 275–281.[CrossRef]
    [Google Scholar]
  16. Han, Y. K., Kim, M. D., Lee, S. H., Yun, S. H. & Lee, Y. W. ( 2007; ). A novel F-box protein involved in sexual development and pathogenesis in Gibberella zeae. Mol Microbiol 63, 768–779.
    [Google Scholar]
  17. Lalaoui, F., Halama, P., Dumortier, V. & Paul, B. ( 2000; ). Cell wall-degrading enzymes produced in vitro by isolates of Phaeosphaeria nodorum differing in aggressiveness. Plant Pathol 49, 727–733.[CrossRef]
    [Google Scholar]
  18. Lehtinen, U. ( 1993; ). Plant cell wall degrading enzymes of Septoria nodorum. Physiol Mol Plant Pathol 43, 121–134.[CrossRef]
    [Google Scholar]
  19. Lei, S. P., Lin, H. C., Heffernan, L. & Wilcox, G. ( 1985; ). Evidence that polygalacturonase is a virulence determinant in Erwinia carotovora. J Bacteriol 164, 831–835.
    [Google Scholar]
  20. Mae, A., Heikinheimo, R. & Palva, E. T. ( 1995; ). Structure and regulation of the Erwinia carotovora subspecies carotovora SCC3193 cellulase gene celV1 and the role of cellulase in phytopathogenicity. Mol Gen Genet 247, 17–26.[CrossRef]
    [Google Scholar]
  21. Moreno, C. S., Park, S., Nelson, K., Ashby, D., Hubalek, F., Lane, W. S. & Pallas, D. C. ( 2000; ). WD40 repeat proteins striatin and S/G2 nuclear autoantigen are members of a novel family of calmodulin-binding proteins that associate with protein phosphatase 2A. J Biol Chem 275, 5257–5263.[CrossRef]
    [Google Scholar]
  22. Newman, J. R., Wolf, E. & Kim, P. S. ( 2000; ). A computationally directed screen identifying interacting coiled coils from Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 97, 13203–13208.[CrossRef]
    [Google Scholar]
  23. Novo, M., Pomar, F., Gayoso, C. & Merino, F. ( 2006; ). Cellulase activity in isolates of Verticillium dahliae differing in aggressiveness. Plant Dis 90, 155–160.[CrossRef]
    [Google Scholar]
  24. Oeser, B., Heidrich, P. M., Muller, U., Tudzynski, P. & Tenberge, K. B. ( 2002; ). Polygalacturonase is a pathogenicity factor in the Claviceps purpurea/rye interaction. Fungal Genet Biol 36, 176–186.[CrossRef]
    [Google Scholar]
  25. Patharkar, O. R. & Cushman, J. C. ( 2006; ). A novel coiled-coil protein co-localizes and interacts with a calcium-dependent protein kinase in the common ice plant during low-humidity stress. Planta 225, 57–73.[CrossRef]
    [Google Scholar]
  26. Pöggeler, S. & Kück, U. ( 2004; ). A WD40 repeat protein regulates fungal cell differentiation and can be replaced functionally by the mammalian homologue striatin. Eukaryot Cell 3, 232–240.[CrossRef]
    [Google Scholar]
  27. Roberts, D. P., Denny, T. P. & Schell, M. A. ( 1988; ). Cloning of the egl gene of Pseudomonas solanacearum and analysis of its role in phytopathogenicity. J Bacteriol 170, 1445–1451.
    [Google Scholar]
  28. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  29. Scott-Craig, J. S., Panaccione, D. G., Cervone, F. & Walton, J. D. ( 1990; ). Endopolygalacturonase is not required for pathogenicity of Cochliobolus carbonum on maize. Plant Cell 2, 1191–1200.[CrossRef]
    [Google Scholar]
  30. Shim, W. B. & Woloshuk, C. P. ( 2001; ). Regulation of fumonisin B1 biosynthesis and conidiation in Fusarium verticillioides by a cyclin-like (C-type) gene, FCC1. Appl Environ Microbiol 67, 1607–1612.[CrossRef]
    [Google Scholar]
  31. Shim, W. B., Sagaram, U. S., Choi, Y. E., So, J., Wilkinson, H. H. & Lee, Y. W. ( 2006; ). FSR1 is essential for virulence and female fertility in Fusarium verticillioides and F. graminearum. Mol Plant Microbe Interact 19, 725–733.[CrossRef]
    [Google Scholar]
  32. Smith, T. F., Gaitatzes, C., Saxena, K. & Neer, E. J. ( 1999; ). The WD repeat: a common architecture for diverse functions. Trends Biochem Sci 24, 181–185.[CrossRef]
    [Google Scholar]
  33. ten Have, A., Mulder, W., Visser, J. & van Kan, J. A. ( 1998; ). The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea. Mol Plant Microbe Interact 11, 1009–1016.[CrossRef]
    [Google Scholar]
  34. Walton, J. D. ( 1994; ). Deconstructing the cell wall. Plant Physiol 104, 1113–1118.
    [Google Scholar]
  35. White, D. G. ( 1999; ). Compendium of Corn Diseases, 3rd edn. St. Paul, MN: APS Press.
  36. Yu, J. H., Hamari, Z., Han, K. H., Seo, J. A., Reyes-Dominguez, Y. & Scazzocchio, C. ( 2004; ). Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol 41, 973–981.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/016782-0
Loading
/content/journal/micro/10.1099/mic.0.2008/016782-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error