1887

Abstract

Nisin is a post-translationally modified antimicrobial peptide produced by which binds to lipid II in the membrane to form pores and inhibit cell-wall synthesis. A nisin-resistant (Nis) strain of , which is able to grow at a 75-fold higher nisin concentration than its parent strain, was investigated with respect to changes in the cell wall. Direct binding studies demonstrated that less nisin was able to bind to lipid II in the membranes of Nis than in the parent strain. In contrast to vancomycin binding, which showed ring-like binding, nisin was observed to bind in patches close to cell-division sites in both the wild-type and the Nis strains. Comparison of modifications in lipoteichoic acid of the strains revealed an increase in -alanyl esters and galactose as substituents in Nis, resulting in a less negatively charged cell wall. Moreover, the cell wall displays significantly increased thickness at the septum. These results indicate that shielding the membrane and thus the lipid II molecule, thereby decreasing abduction of lipid II and subsequent pore-formation, is a major defence mechanism of against nisin.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/015412-0
2008-06-01
2020-04-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/6/1755.html?itemId=/content/journal/micro/10.1099/mic.0.2007/015412-0&mimeType=html&fmt=ahah

References

  1. Breukink E., Wiedemann I., van Kraaij C., Kuipers O. P., Sahl H.-G., de Kruijff B.. 1999; Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science286:2361–2364
    [Google Scholar]
  2. Brötz H., Josten M., Wiedemann I., Schneider U., Götz F., Bierbaum G., Sahl H.-G.. 1998; Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics. Mol Microbiol30:317–327
    [Google Scholar]
  3. Chopin A., Chopin M. C., Moillo-Batt A., Langella P.. 1984; Two plasmid-determined restriction and modification systems in Streptococcus lactis . Plasmid11:260–263
    [Google Scholar]
  4. Courtin P., Miranda G., Guillot A., Wessner F., Mezange C., Domakova E., Kulakauskas S., Chapot-Chartier M. P.. 2006; Peptidoglycan structure analysis of Lactococcus lactis reveals the presence of an l,d-carboxypeptidase involved in peptidoglycan maturation. J Bacteriol188:5293–5298
    [Google Scholar]
  5. Cui L., Murakami H., Kuwahara-Arai K., Hanaki H., Hiramatsu K.. 2000; Contribution of a thickened cell wall and its glutamine nonamidated component to the vancomycin resistance expressed by Staphylococcus aureus Mu50. Antimicrob Agents Chemother44:2276–2285
    [Google Scholar]
  6. Daniel R. A., Errington J.. 2003; Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell113:767–776
    [Google Scholar]
  7. Delcour J., Ferrain T., Deghorian M., Palumbo E., Hols P.. 1999; The biosynthesis and functionality of the cell wall of lactic acid bacteria. Antonie Van Leeuwenhoek76:159–184
    [Google Scholar]
  8. Delves-Broughton J., Blackburn P., Evans R. J., Hugenholtz J.. 1996; Applications of the bacteriocin, nisin. Antonie van Leeuwenhoek69:193–202
    [Google Scholar]
  9. Duwat P., Cochu A., Ehrlich S. D., Gruss A.. 1997; Characterization of Lactococcus lactis UV-sensitive mutants obtained by ISS1 transposition. J Bacteriol179:4473–4479
    [Google Scholar]
  10. Fabretti F., Theilacker C., Baldassarri L., Kaczynski Z., Kropec A., Holst O., Huebner J.. 2006; Alanine esters of enterococcal lipoteichoic acid play a role in biofilm formation and resistance to antimicrobial peptides. Infect Immun74:4164–4171
    [Google Scholar]
  11. Gravesen A., Sorensen K., Aarestrup F. M., Knochel S.. 2001; Spontaneous nisin-resistant Listeria monocytogenes mutants with increased expression of a putative penicillin-binding protein and their sensitivity to various antibiotics. Microb Drug Resist7:127–135
    [Google Scholar]
  12. Grossiord B. P., Luesink E. J., Vaughan E. E., Arnaud A., de Vos W. M.. 2003; Characterization, expression and mutation of the Lactococcus lactis galPMKTE genes, involved in the galactose utilization via the Leloir pathway. J Bacteriol185:870–878
    [Google Scholar]
  13. Hamilton A., Popham D. L., Carl D. J., Lauth X., Nizet V., Jones A. L.. 2006; Penicillin-binding protein 1a promotes resistance of group B streptococcus to antimicrobial peptides. Infect Immun74:6179–6187
    [Google Scholar]
  14. Hasper H. E., de Kruijff B., Breukink E.. 2004; Assembly and stability of nisin-lipid II pores. Biochemistry43:11567–11575
    [Google Scholar]
  15. Hasper H. E., Kramer N. E., Smith J. L., Hillman L. D., Zachariah C., Kuipers O. P., de Kruijff B., Breukink E.. 2006; An alternative bactericidal mechanism of action for lantibiotic peptides that target lipid II. Science313:1636–1637
    [Google Scholar]
  16. Heaton M. P., Neuhaus F. C.. 1993; The significance of secondary cell wall polymers in Gram-positive organisms: Lactobacillus casei as a model for study of d-alanyl-teichoic acid biosynthesis and function. In The Lactic Acid Bacteria pp89–98 Edited by Foo E. L., Griffin H. G., Mollby R., Heden C. G.. Wymondham: Horizon;
    [Google Scholar]
  17. Hurst A.. 1981; Nisin. Adv Appl Microbiol27:85–123
    [Google Scholar]
  18. Hyde A. J., Parisot J., McNichol A., Bonev B. B.. 2006; Nisin-induced changes in Bacillus morphology suggest a paradigm of antibiotic action. Proc Natl Acad Sci U S A103:19896–19901
    [Google Scholar]
  19. Jung G.. 1991; Lantibiotics: a survey. In Lantibiotics: a Survey pp1–34 Edited by Sahl H.-G., Jung G. Amsterdam, The Netherlands: ESCOM Science Publishers;
    [Google Scholar]
  20. Kovacs M., Halfman A., Fedtke I., Heintz M., Peschel A., Vollmer W., Hakenbeck R., Bruckner R.. 2006; A functional dlt operon, encoding proteins required for incorporation of d-alanine in teichoic acids in Gram-positive bacteria confers resistance to cationic peptides in Streptococcus pneumoniae . J Bacteriol188:5797–5805
    [Google Scholar]
  21. Kramer N. E., Smid E. J., Kok J., de Kruijff B., Kuipers O. P., Breukink E.. 2004; Sensitivity or resistance of Gram-positive bacteria to nisin is not determined by the amount of the receptor Lipid II. FEMS Microbiol Lett239:157–161
    [Google Scholar]
  22. Kramer N. E., Hijum S. A. F. T., Knol J., Kok J., Kuipers O. P.. 2006; Identification by DNA-microarrays of genes involved in acquired resistance against nisin in Lactococcus lactis . Antimicrob Agents Chemother50:1753–1762
    [Google Scholar]
  23. Maisnier-Patin S., Richard J.. 1996; Cell wall changes in nisin-resistant variants of Listeria innocua grown in the presence of high nisin concentrations. FEMS Microbiol Lett140:29–35
    [Google Scholar]
  24. Mantovani H. C., Russell J. B.. 2001; Nisin resistance of Streptococcus bovis . Appl Environ Microbiol67:808–813
    [Google Scholar]
  25. Mattick A. T., Hirsch A.. 1944; A powerful inhibitory substance produced by group N streptococci. Nature154:551
    [Google Scholar]
  26. Morath S., Geyer A., Hartung T.. 2001; Structure–function relationship of cytokine induction by lipoteichoic acid from Staphylococcus aureus . J Exp Med193:393–397
    [Google Scholar]
  27. Naumova I. B., Shashkov A. S., Tul'skaya E. M., Streshinskaya G. M., Kozlova Y. I., Potekhina N. V., Evtushenko L. I., Stackebrandt E.. 2001; Cell wall teichoic acids: structural diversity, species specificity in the genus Nocardiopsis , and chemotaxonomic perspective. FEMS Microbiol Rev25:269–283
    [Google Scholar]
  28. Palumbo E., Deghorian M., Cocconcelli P. S., Kleerebezem M., Geyer A., Hartung T., Morath S., Hols P.. 2006; d-Alanyl ester depletion of teichoic acids in Lactobacillus plantarum results in a major modification of lipoteichoic acid composition and cell wall perforations at the septum mediated by the Acm2 autolysin. J Bacteriol188:3709–3715
    [Google Scholar]
  29. Peschel A., Otto M., Jack R. W., Kalbacher H., Jung G., Götz F.. 1999; Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins and other antimicrobial peptides. J Biol Chem274:8405–8410
    [Google Scholar]
  30. Pol I. E., Smid E. J.. 1999; Combined action of nisin and carvacrol on Bacillus cereus and Listeria monocytogenes . Lett Appl Microbiol29:166–170
    [Google Scholar]
  31. Rouser G., Fleisher S., Yamamoto A.. 1970; Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids5:494–496
    [Google Scholar]
  32. Sahl H. G., Bierbaum G.. 1998; Lantibiotics: biosynthesis and biological activities of uniquely modified peptides from Gram-positive bacteria. Annu Rev Microbiol52:41–79
    [Google Scholar]
  33. Sheldrick G. M., Jones P. G., Kennard O., Williams D. H., Smith G. A.. 1978; Structure of vancomycin and its complex with acetyl-d-alanyl-d-alanine. Nature271:223–225
    [Google Scholar]
  34. Steen A., Buist G., Leenhouts K. J., El K. M., Grijpstra F., Zomer A. L., Venema G., Kuipers O. P., Kok J.. 2003; Cell wall attachment of a widely distributed peptidoglycan binding domain is hindered by cell wall constituents. J Biol Chem278:23874–23881
    [Google Scholar]
  35. Terzaghi B. E., Sandine W. E.. 1975; Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol29:807–813
    [Google Scholar]
  36. van Heijenoort J.. 2001; Formation of the glycan chains in the synthesis of bacterial peptidoglycan. Glycobiology11:25R–36R
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/015412-0
Loading
/content/journal/micro/10.1099/mic.0.2007/015412-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error