1887

Abstract

The respiratory chain of the ethanol-producing bacterium is able to oxidize both species of nicotinamide cofactors, NADH and NADPH. A mutant strain with a chloramphenicol-resistance determinant inserted in (encoding an NADH : CoQ oxidoreductase of type II) lacked the membrane NADH and NADPH oxidase activities, while its respiratory -lactate oxidase activity was increased. Cells of the mutant strain showed a very low respiration rate with glucose and no respiration with ethanol. The aerobic growth rate of the mutant was elevated; exponential growth persisted longer, resulting in higher biomass densities. For the parent strain a similar effect of aerobic growth stimulation was achieved previously in the presence of submillimolar cyanide concentrations. It is concluded (i) that the respiratory chain of contains only one functional NAD(P)H dehydrogenase, product of the gene, and (ii) that inhibition of respiration, whether resulting from a mutation or from inhibitor action, stimulates aerobic growth due to redirection of the NADH flux from respiration to ethanol synthesis, thus minimizing accumulation of toxic intermediates by contributing to the reduction of acetaldehyde to ethanol.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/012682-0
2008-03-01
2020-07-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/3/989.html?itemId=/content/journal/micro/10.1099/mic.0.2007/012682-0&mimeType=html&fmt=ahah

References

  1. Belaïch J. P., Senez J. C.. 1965; Influence of aeration and pantothenate on growth yields of Zymomonas mobilis . J Bacteriol89:1195–1200
    [Google Scholar]
  2. Bertsova Y. V., Bogachev A. V., Skulachev V. P.. 2001; Noncoupled NADH : ubiquinone oxidoreductase of Azotobacter vinelandii is required for diazotrophic growth at high oxygen concentrations. J Bacteriol183:6869–6874
    [Google Scholar]
  3. Bringer S., Finn R. K., Sahm H.. 1984; Effect of oxygen on the metabolism of Zymomonas mobilis . Arch Microbiol139:376–381
    [Google Scholar]
  4. Calhoun M. W., Oden K. L., Gennis R. B., de Mattos J. T., Neijssel J.. 1993; Energetic efficiency of Escherichia coli : effects of mutations in components of the aerobic respiratory chain. J Bacteriol175:3020–3025
    [Google Scholar]
  5. Conway T.. 1992; The Entner–Doudoroff pathway: history, physiology and molecular biology. FEMS Microbiol Rev9:1–27
    [Google Scholar]
  6. Demirtas M. U., Kolhatkar A., Kilbane J. J.. 2nd (2003; Effect of aeration and agitation on growth rate of Thermus thermophilus in batch mode. J Biosci Bioeng95:113–117
    [Google Scholar]
  7. Dien B. S., Cotta M. A., Jeffries T. W.. 2003; Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol63:258–266
    [Google Scholar]
  8. Kalnenieks U.. 2006; Physiology of Zymomonas mobilis : some unanswered questions. Adv Microb Physiol51:73–117
    [Google Scholar]
  9. Kalnenieks U., de Graaf A. A., Bringer-Meyer S., Sahm H.. 1993; Oxidative phosphorylation in Zymomonas mobilis . Arch Microbiol160:74–79
    [Google Scholar]
  10. Kalnenieks U., Galinina N., Irbe I., Toma M. M.. 1995; Energy coupling sites in the electron transport chain of Zymomonas mobilis . FEMS Microbiol Lett133:99–104
    [Google Scholar]
  11. Kalnenieks U., Galinina N., Toma M. M., Skards I.. 1996; Electron transport chain in aerobically cultivated Zymomonas mobilis . FEMS Microbiol Lett143:185–189
    [Google Scholar]
  12. Kalnenieks U., Galinina N., Bringer-Meyer S., Poole R. K.. 1998; Membrane d-lactate oxidase in Zymomonas mobilis : evidence for a branched respiratory chain. FEMS Microbiol Lett168:91–97
    [Google Scholar]
  13. Kalnenieks U., Galinina N., Toma M. M., Poole R. K.. 2000; Cyanide inhibits respiration yet stimulates aerobic growth of Zymomonas mobilis . Microbiology146:1259–1266
    [Google Scholar]
  14. Kalnenieks U., Toma M. M., Galinina N., Poole R. K.. 2003; The paradoxical cyanide-stimulated respiration of Zymomonas mobilis : cyanide sensitivity of alcohol dehydrogenase (ADH II. Microbiology149:1739–1744
    [Google Scholar]
  15. Kalnenieks U., Galinina N., Toma M. M., Pickford J. L., Rutkis R., Poole R. K.. 2006; Respiratory behaviour of a Zymomonas mobilis adhB  :  kanr mutant supports the hypothesis of two alcohol dehydrogenase isoenzymes catalysing opposite reactions. FEBS Lett580:5084–5088
    [Google Scholar]
  16. Kim Y. J., Song K.-B., Rhee S.-K.. 1995; A novel aerobic respiratory chain-linked NADH oxidase system in Zymomonas mobilis . J Bacteriol177:5176–5178
    [Google Scholar]
  17. Leif H., Sled V. D., Ohnishi T., Weiss H., Friedrich T.. 1995; Isolation and characterization of the proton-translocating NADH : ubiquinone oxidoreductase from Escherichia coli . Eur J Biochem230:538–548
    [Google Scholar]
  18. Liang C.-C., Lee W.-C.. 1998; Characteristics and transformation of Zymomonas mobilis with plasmid pKT230 by electroporation. Bioprocess Eng19:81–85
    [Google Scholar]
  19. Markwell M. A. K., Haas S. M., Bieber L. L., Talbert N. E.. 1978; A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem87:206–210
    [Google Scholar]
  20. Matsushita K., Ohnishi T., Kaback R. H.. 1987; NADH-ubiquinone oxidoreductases of the Escherichia coli aerobic respiratory chain. Biochemistry26:7732–7737
    [Google Scholar]
  21. Matsushita K., Otofuji A., Iwahashi M., Toyama H., Adachi O.. 2001; NADH dehydrogenase of Corynebacterium glutamicum . Purification of an NADH dehydrogenase II homolog able to oxidize NADPH. FEMS Microbiol Lett204:271–276
    [Google Scholar]
  22. Nantapong N., Kugimiya Y., Toyama H., Adachi O., Matsushita K.. 2004; Effect of NADH dehydrogenase-disruption and over-expression on respiration-related metabolism in Corynebacterium glutamicum KY 9714. Appl Microbiol Biotechnol66:187–193
    [Google Scholar]
  23. Pankova L. M., Shvinka Y. E., Beker M. E., Slava E. E.. 1985; Effect of aeration on Zymomonas mobilis metabolism. Mikrobiologiia54:141–145
    [Google Scholar]
  24. Poole R. K., Cook G. M.. 2000; Redundancy of aerobic respiratory chains in bacteria? Routes, reasons and regulation. Adv Microb Physiol43:165–224
    [Google Scholar]
  25. Reyes L., Scopes R. K.. 1991; Membrane-associated ATPase from Zymomonas mobilis ; purification and characterization. BBA1068:174–178
    [Google Scholar]
  26. Rogers P. L. K., Lee J., Skotnicki M. L., Tribe D. E.. 1982; Ethanol production by Zymomonas mobilis . Adv Biochem Eng23:37–84
    [Google Scholar]
  27. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. Schmehl M., Jahn A., Meyer zu Vilsendorf A., Hennecke S., Masepohl B., Schuppler M., Marxer M., Oelze J., Klipp W.. 1993; Identification of a new class of nitrogen fixation genes in Rhodobacter capsulatus : a putative membrane complex involved in electron transport to nitrogenase. Mol Gen Genet241:602–615
    [Google Scholar]
  29. Seo J.-S., Chong H., Park H. S., Yoon K.-O., Jung C., Kim J. J., Hong J. H., Kim H., Kim J. H.. other authors 2005; The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4. Nat Biotechnol23:63–68
    [Google Scholar]
  30. Sprenger G. A.. 1996; Carbohydrate metabolism in Zymomonas mobilis : a catabolic highway with some scenic routes. FEMS Microbiol Lett145:301–307
    [Google Scholar]
  31. Strohdeicher M., Neuß B., Bringer-Meyer S., Sahm H.. 1990; Electron transport chain of Zymomonas mobilis . Interaction with the membrane-bound glucose dehydrogenase and identification of ubiquinone 10. Arch Microbiol154:536–543
    [Google Scholar]
  32. Viikari L.. 1986; By-product formation in ethanol fermentation by Zymomonas mobilis. Technical Research Centre of Finland. Publication27:
    [Google Scholar]
  33. Viikari L., Berry D. R.. 1988; Carbohydrate metabolism in Zymomonas . Crit Rev Biotechnol7:237–261
    [Google Scholar]
  34. Wang G., Maier R. J.. 2004; An NADPH quinone reductase of Helicobacter pylori plays an important role in oxidative stress resistence and host colonization. Infect Immun72:1391–1396
    [Google Scholar]
  35. Wecker M. S. A., Zall R. R.. 1987; Production of acetaldehyde by Zymomonas mobilis . Appl Environ Microbiol53:2815–2820
    [Google Scholar]
  36. Yagi T.. 1991; Bacterial NADH-quinone oxidoreductases. J Bioenerg Biomembr23:211–225
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/012682-0
Loading
/content/journal/micro/10.1099/mic.0.2007/012682-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error