1887

Abstract

Several inducers of chlamydial persistence have been described, including interferon- (IFN-), IFN-, IFN-, and tumour necrosis factor- (TNF-) exposure, and iron, amino acid or glucose deprivation. A tissue-culture model of /herpes simplex virus type-2 (HSV-2) co-infection indicates that viral co-infection stimulates the formation of persistent chlamydiae. This study was designed to ascertain whether co-infection-induced persistence is mediated by a previously characterized mechanism. Luminex assays indicate that IFN-, IFN-, and TNF- are not released from co-infected cells. Semiquantitative RT-PCR studies demonstrate that IFN-, IFN-, indoleamine 2,3-dioxygenase, lymphotoxin- and inducible nitric oxide synthase are not expressed during co-infection. These data indicate that viral-induced persistence is not stimulated by any persistence-associated cytokine. Supplementation of co-infected cells with excess amino acids, iron-saturated holotransferrin, glucose or a combination of amino acids and iron does not restore chlamydial infectivity, demonstrating that HSV-2-induced persistence is not mediated by depletion of these nutrients. Finally, inclusions within co-infected cells continue to enlarge and incorporate C-NBD-ceramide, indicating that HSV-2 co-infection does not inhibit vesicular transport to the developing inclusion. Collectively these data demonstrate that co-infection-induced persistence is not mediated by any currently characterized persistence inducer or anti-chlamydial pathway. Previous studies indicate that HSV-2 attachment and/or entry into the host cell is sufficient for stimulating chlamydial persistence, suggesting that viral attachment and/or entry may trigger a novel host pathway which restricts chlamydial development.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/012161-0
2008-03-01
2020-08-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/3/971.html?itemId=/content/journal/micro/10.1099/mic.0.2007/012161-0&mimeType=html&fmt=ahah

References

  1. Alzhanov D. T., Suchland R. J., Bakke A. C., Stamm W. E., Rockey D. D.. 2007; Clonal isolation of chlamydia-infected cells using flow cytometry. J Microbiol Methods68:201–208
    [Google Scholar]
  2. Aravalli R. N., Hu S., Rowen T. N., Palmquist J. M., Lokensgard J. R.. 2005; TLR2-mediated proinflammatory cytokine and chemokine production by microglial cells in response to herpes simplex virus. J Immunol175:4189–4193
    [Google Scholar]
  3. Beatty W. L., Belanger T. A., Desai A. A., Morrison R. P., Byrne G. I.. 1994; Tryptophan depletion as a mechanism of gamma interferon-mediated chlamydial persistence. Infect Immun62:3705–3711
    [Google Scholar]
  4. Belland R. J., Nelson D. E., Virok D., Crane D. D., Hogan D., Sturdevant D., Beatty W. L., Caldwell H. D.. 2003; Transcriptome analysis of chlamydial growth during IFN-gamma-mediated persistence and reactivation. Proc Natl Acad Sci U S A100:15971–15976
    [Google Scholar]
  5. Butler T. R.. 1997; The Hidden Epidemic: Confronting Sexually Transmitted Diseases, Table 2-5 p59 Washington, DC: National Academy Press;
    [Google Scholar]
  6. Carlin J. M., Weller J. B.. 1995; Potentiation of interferon-mediated inhibition of Chlamydia infection by interleukin-1 in human macrophage cultures. Infect Immun63:1870–1875
    [Google Scholar]
  7. Chiarini F., Mansi A., Pisani S., Seganti L., Brunori S., Gentile V., Di Silverio F.. 1996; In vitro study of a double infection by herpes simplex virus type 2 and Chlamydia trachomatis . New Microbiol19:263–266
    [Google Scholar]
  8. Compton T., Kurt-Jones E. A., Boehme K. W., Belko J., Latz E., Golenbock D. T., Finberg R. W.. 2003; Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. J Virol77:4588–4596
    [Google Scholar]
  9. Darville T.. 2000; Chlamydia spp. In Persistent Bacterial Infections pp229–261 Edited by Nataro J. P.. Washington, DC: American Society for Microbiology Press;
    [Google Scholar]
  10. Deka S., Vanover J., Dessus-Babus S., Whittimore J., Howett M. K., Wyrick P. B., Schoborg R. V.. 2006; Chlamydia trachomatis enters a viable but non-cultivable (persistent) state within herpes simplex virus type 2 (HSV-2) co-infected host cells. Cell Microbiol8:149–162
    [Google Scholar]
  11. Deka S., Vanover J., Sun J., Kintner J., Whittimore J., Schoborg R. V.. 2007; An early event in the herpes simplex virus type-2 replication cycle is sufficient to induce Chlamydia trachomatis persistence. Cell Microbiol9:725–737
    [Google Scholar]
  12. Devitt A., Lund P. A., Morris A. G., Pearce J. H.. 1996; Induction of alpha/beta interferon and dependent nitric oxide synthesis during Chlamydia trachomatis infection of McCoy cells in the absence of exogenous cytokine. Infect Immun64:3951–3956
    [Google Scholar]
  13. Dill B. D., Raulston J. E.. 2007; Examination of an inducible expression system for limiting iron availability during Chlamydia trachomatis infection. Microbes Infect9:947–953
    [Google Scholar]
  14. Duff R., Rapp F.. 1971; Properties of hamster embryo fibroblasts transformed in vitro after exposure to ultraviolet-irradiated herpes simplex virus type 2. J Virol8:469–477
    [Google Scholar]
  15. Elliott G., O'Hare P.. 1998; Herpes simplex virus type 1 tegument protein VP22 induces the stabilization and hyperacetylation of microtubules. J Virol72:6448–6455
    [Google Scholar]
  16. Granger S. W., Rickert S.. 2003; LIGHT-HVEM signaling and the regulation of T cell-mediated immunity. Cytokine Growth Factor Rev14:289–296
    [Google Scholar]
  17. Hackstadt T., Scidmore M. A., Rockey D. D.. 1995; Lipid metabolism in Chlamydia trachomatis -infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion. Proc Natl Acad Sci U S A92:4877–4881
    [Google Scholar]
  18. Harper A., Pogson C. I., Jones M. L., Pearce J. H.. 2000; Chlamydial development is adversely affected by minor changes in amino acid supply, blood plasma amino acid levels, and glucose deprivation. Infect Immun68:1457–1464
    [Google Scholar]
  19. Hogan R. J., Mathews S. A., Mukhopadhyay S., Summersgill J. T., Timms P.. 2004; Chlamydial persistence: beyond the biphasic paradigm. Infect Immun72:1843–1855
    [Google Scholar]
  20. Hsu H., Solovyev I., Colombero A., Elliott R., Kelley M., Boyle W. J.. 1997; ATAR, a novel tumor necrosis factor receptor family member, signals through TRAF2 and TRAF5. J Biol Chem272:13471–13474
    [Google Scholar]
  21. Kurt-Jones E. A., Belko J., Yu C., Newburger P. E., Wang J., Chan M., Knipe D. M., Finberg R. W.. 2005; The role of Toll-like receptors in herpes simplex infection in neonates. J Infect Dis191:746–748
    [Google Scholar]
  22. Kwong A. D., Frenkel N.. 1989; The herpes simplex virus virion host shutoff function. J Virol63:4834–4839
    [Google Scholar]
  23. Li H., Zhang J., Kumar A., Zheng M., Atherton S. S., Yu F. X.. 2006; Herpes simplex virus 1 infection induces the expression of proinflammatory cytokines, interferons and TLR7 in human corneal epithelial cells. Immunology117:167–176
    [Google Scholar]
  24. Matsushima H., Shirai M., Ouchi K., Yamashita K., Kakutani T., Furukawa S., Nakazawa T.. 1999; Lymphotoxin inhibits Chlamydia pneumoniae growth in HEp-2 cells. Infect Immun67:3175–3179
    [Google Scholar]
  25. Mauri D. N., Ebner R., Montgomery R. I., Kochel K. D., Cheung T. C., Yu G. L., Ruben S., Murphy M., Eisenberg R. J.. other authors 1998; LIGHT, a new member of the TNF superfamily, and lymphotoxin alpha are ligands for herpesvirus entry mediator. Immunity8:21–30
    [Google Scholar]
  26. Nakanishi H., Takai Y.. 2004; Roles of nectins in cell adhesion, migration and polarization. Biol Chem385:885–892
    [Google Scholar]
  27. Nelson D. E., Virok D. P., Wood H., Roshick C., Johnson R. M., Whitmire W. M., Crane D. D., Steele-Mortimer O., Kar L.. other authors 2005; Chlamydial IFN-gamma immune evasion is linked to host infection tropism. Proc Natl Acad Sci U S A102:10658–10663
    [Google Scholar]
  28. Paavonen J., Teisala K., Heinonen P. K., Aine R., Miettinen A., Lehtinen M., Gronroos P.. 1985; Endometritis and acute salpingitis associated with Chlamydia trachomatis and herpes simplex virus type two. Obstet Gynecol65:288–291
    [Google Scholar]
  29. Pantoja L. G., Miller R. D., Ramirez J. A., Molestina R. E., Summersgill J. T.. 2001; Characterization of Chlamydia pneumoniae persistence in HEp-2 cells treated with gamma interferon. Infect Immun69:7927–7932
    [Google Scholar]
  30. Pasieka T. J., Baas T., Carter V. S., Proll S. C., Katze M. G., Leib D. A.. 2006; Functional genomic analysis of herpes simplex virus type 1 counteraction of the host innate response. J Virol80:7600–7612
    [Google Scholar]
  31. Pontefract R. D., Ng C. W., Bergeron G.. 1989; Vero cells co-infected with Chlamydia trachomatis and herpes simplex virus type 2: a scanning and transmission electron microscope study. Sex Transm Dis16:74–78
    [Google Scholar]
  32. Pyles R. B., Higgins D., Chalk C., Zalar A., Eiden J., Bown C., Van Nest G., Stanberry L. R.. 2002; Use of immunostimulatory sequence containing oligonucleotides as topical therapy for herpes simplex virus type 2 infection. J Virol76:11387–11396
    [Google Scholar]
  33. Raulston J. E.. 1997; Response of Chlamydia trachomatis serovar E to iron restriction in vitro and evidence for iron-regulated chlamydial proteins. Infect Immun65:4539–4547
    [Google Scholar]
  34. Roizman B., Knipe D. M.. 2001; Herpes simplex viruses and their replication. In Field's Virology pp2399–2459 Edited by Knipe D. M., Howley P. M. Baltimore, MD: Lippincott Williams & Wilkins;
    [Google Scholar]
  35. Roshick C., Wood H., Caldwell H. D., McClarty G.. 2006; Comparison of gamma interferon-mediated antichlamydial defense mechanisms in human and mouse cells. Infect Immun74:225–238
    [Google Scholar]
  36. Shemer-Avni Y., Wallach D., Sarov I.. 1988; Inhibition of Chlamydia trachomatis growth by recombinant tumor necrosis factor. Infect Immun56:2503–2506
    [Google Scholar]
  37. Spear P. G.. 2004; Herpes simplex virus: receptors and ligands for cell entry. Cell Microbiol6:401–410
    [Google Scholar]
  38. Summersgill J. T., Sahney N. N., Gaydos C. A., Quinn T. C., Ramirez J. A.. 1995; Inhibition of Chlamydia pneumoniae growth in HEp-2 cells pretreated with gamma interferon and tumor necrosis factor alpha. Infect Immun63:2801–2803
    [Google Scholar]
  39. Superti F., Longhi C., Di Biase A. M., Tinari A., Marchetti M., Pisani S., Gallinelli C., Chiarini F., Seganti L.. 2001; Herpes simplex virus type 2 modulates the susceptibility of human bladder cells to uropathogenic bacteria. Med Microbiol Immunol189:201–208
    [Google Scholar]
  40. Tait J., Peddie B. A., Bailey R. R., Arnold E. P., Russell G. L., Bishop V. A., Burry A. F.. 1985; Urethral syndrome (abacterial cystitis) – search for a pathogen. Br J Urol57:552–556
    [Google Scholar]
  41. Wang J. P., Kurt-Jones E. A., Shin O. S., Manchak M. D., Levin M. J., Finberg R. W.. 2005; Varicella-zoster virus activates inflammatory cytokines in human monocytes and macrophages via Toll-like receptor 2. J Virol79:12658–12666
    [Google Scholar]
  42. Weinstock H., Berman S., Cates W. Jr. 2004; Sexually transmitted diseases among American youth: incidence and prevalence estimates, 2000. Perspect Sex Reprod Health36:6–10
    [Google Scholar]
  43. Wyrick P. B., Gerbig D. G. Jr, Knight S. T., Raulston J. E.. 1996; Accelerated development of genital Chlamydia trachomatis serovar E in McCoy cells grown on microcarrier beads. Microb Pathog20:31–40
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/012161-0
Loading
/content/journal/micro/10.1099/mic.0.2007/012161-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error