1887

Abstract

Formaldehyde is an intermediate formed during the metabolism of methanol or other methylated compounds. Many Gram-negative bacteria generate formaldehyde from methanol via a periplasmic pyrroloquinoline quinone (PQQ)-dependent dehydrogenase in which the subunit of an tetramer has catalytic activity. The genome of the facultative formaldehyde-oxidizing bacterium encodes XoxF, a homologue of the catalytic subunit of a proposed PQQ-containing dehydrogenase of . is part of a gene cluster that encodes periplasmic -type cytochromes, including CycI, isocytochrome and CycB (a cyt homologue), as well as , a glutathione-dependent formaldehyde dehydrogenase (GSH-FDH), and , a homologue of a glutathione–formaldehyde activating enzyme (Gfa). To test the roles of XoxF, CycB and Gfa in formaldehyde metabolism by , we monitored photosynthetic growth with methanol as a source of formaldehyde and whole-cell methanol-dependent oxygen uptake. Our data show that cells lacking XoxF or CycB do not exhibit methanol-dependent oxygen uptake and lack the capacity to utilize methanol as a sole photosynthetic carbon source. These results suggest that both proteins are required for formaldehyde metabolism. Gfa is not essential to activate formaldehyde, as cells lacking are capable of both methanol-dependent oxygen uptake and growth with methanol as a photosynthetic carbon source.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/011346-0
2008-01-01
2019-11-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/1/296.html?itemId=/content/journal/micro/10.1099/mic.0.2007/011346-0&mimeType=html&fmt=ahah

References

  1. Allen, L. N. & Hanson, R. S. ( 1985; ). Construction of broad-host-range cosmid cloning vectors: identification of genes necessary for growth of Methylobacterium organophilum on methanol. J Bacteriol 161, 955–962.
    [Google Scholar]
  2. Anthony, C. ( 1982; ). The Biochemistry of Methylotrophs. London: Academic Press.
  3. Anthony, C. ( 1992; ). The c type cytochromes of methylotrophic bacteria. Biochim Biophys Acta 1099, 1–15.[CrossRef]
    [Google Scholar]
  4. Anthony, C. & Williams, P. ( 2003; ). The structure and mechanism of methanol dehydrogenase. Biochim Biophys Acta 1647, 18–23.[CrossRef]
    [Google Scholar]
  5. Auerbach, C., Moutschen-Dahmen, M. & Moutschen, J. ( 1977; ). Genetic and cytogenetical effects of formaldehyde and related compounds. Mutat Res 39, 317–361.[CrossRef]
    [Google Scholar]
  6. Barber, R. D. ( 1997; ). Formaldehyde sensing and metabolism in Rhodobacter sphaeroides. PhD dissertation, University of Wisconsin-Madison.
  7. Barber, R. D. & Donohue, T. J. ( 1998; ). Pathways for transcriptional activation of a glutathione-dependent formaldehyde dehydrogenase gene. J Mol Biol 280, 775–784.[CrossRef]
    [Google Scholar]
  8. Barber, R. D., Rott, M. A. & Donohue, T. J. ( 1996; ). Characterization of a glutathione-dependent formaldehyde dehydrogenase from Rhodobacter sphaeroides. J Bacteriol 178, 1386–1393.
    [Google Scholar]
  9. Bethesda Laboratories Research ( 1986; ). BRL pUC host: E. coli DH5α TM competent cells. Bethesda Res Lab Focus 8, 9–12.
    [Google Scholar]
  10. Bockhorst, J., Qiu, Y., Glasner, J., Liu, M., Blattner, F. & Craven, M. ( 2003; ). Predicting bacterial transcription units using sequence and expression data. Bioinformatics 19, i34–i43.[CrossRef]
    [Google Scholar]
  11. Bordo, D. & Bork, P. ( 2002; ). The rhodanese/Cdc25 phosphatase superfamily. Sequence–structure–function relations. EMBO Rep 3, 741–746.[CrossRef]
    [Google Scholar]
  12. Chen, W. P. & Kuo, T. T. ( 1993; ). A simple and rapid method for the preparation of Gram-negative bacterial genomic DNA. Nucleic Acids Res 21, 2260 [CrossRef]
    [Google Scholar]
  13. Chistoserdova, L. ( 1996; ). Metabolism of formaldehyde in M. extorquens AM1. In Microbial Growth on C1 Compounds, pp. 16–24. Edited by M. E. Lidstrom & F. R. Tabita. Dordrecht: Kluwer Academic Publishers.
  14. Chistoserdova, L. & Lidstrom, M. E. ( 1997; ). Molecular and mutational analysis of a DNA region separating two methylotrophy gene clusters in Methylobacterium extorquens AM1. Microbiology 143, 1729–1736.[CrossRef]
    [Google Scholar]
  15. Cox, R. L., Patterson, C. & Donohue, T. J. ( 2001; ). Roles for the Rhodobacter sphaeroides CcmA and CcmG proteins. J Bacteriol 183, 4643–4647.[CrossRef]
    [Google Scholar]
  16. Davis, J., Donohue, T. J. & Kaplan, S. ( 1988; ). Construction, characterization, and complementation of a Puf mutant of Rhodobacter sphaeroides. J Bacteriol 170, 320–329.
    [Google Scholar]
  17. Dennis, J. J. & Zylstra, G. J. ( 1998; ). Plasposons: modular self-cloning minitransposon derivatives for rapid genetic analysis of Gram-negative bacterial genomes. Appl Environ Microbiol 64, 2710–2715.
    [Google Scholar]
  18. Ghosh, M., Anthony, C., Harlos, K., Goodwin, M. G. & Blake, C. ( 1995; ). The refined structure of the quinoprotein methanol dehydrogenase from Methylobacterium extorquens at 1.94 A. Structure 3, 177–187.[CrossRef]
    [Google Scholar]
  19. Goenrich, M., Bartoschek, S., Hagemeier, C. H., Griesinger, C. & Vorholt, J. A. ( 2002; ). A glutathione-dependent formaldehyde activating enzyme (Gfa) from Paracoccus denitrificans detected and purified via 2D proton exchange NMR spectroscopy. J Biol Chem 277, 3069–3072.[CrossRef]
    [Google Scholar]
  20. Goodwin, P. M. & Anthony, C. ( 1998; ). The biochemistry, physiology and genetics of PQQ and PQQ-containing enzymes. Adv Microb Physiol 40, 1–80.
    [Google Scholar]
  21. Harms, N. & van Spanning, R. J. ( 1991; ). C1 metabolism in Paracoccus denitrificans: genetics of Paracoccus denitrificans. J Bioenerg Biomembr 23, 187–210.[CrossRef]
    [Google Scholar]
  22. Harms, N., Ras, J., Koning, S., Reijnders, W. N. M., Stouthamer, A. H. & van Spanning, R. J. M. ( 1996; ). Genetics of C1 metabolism regulation in Paracoccus denitrificans. In Microbial Growth on C1 Compounds, pp. 126–132. Edited by M. E. Lidstrom & F. R. Tabita. Dordrecht: Kluwer Academic Publishers.
  23. Hickman, J. ( 2003; ). Physiology and regulation of glutathione-dependent formaldehyde metabolism. PhD dissertation, University of Wisconsin-Madison.
  24. Hickman, J. W., Barber, R. D., Skaar, E. P. & Donohue, T. J. ( 2002; ). Link between the membrane-bound pyridine nucleotide transhydrogenase and glutathione-dependent processes in Rhodobacter sphaeroides. J Bacteriol 184, 400–409.[CrossRef]
    [Google Scholar]
  25. Hickman, J. W., Witthuhn, V. C., Jr, Dominguez, M. & Donohue, T. J. ( 2004; ). Positive and negative transcriptional regulators of glutathione-dependent formaldehyde metabolism. J Bacteriol 186, 7914–7925.[CrossRef]
    [Google Scholar]
  26. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  27. Levy, H. ( 1971; ). Normal atmosphere: large radical and formaldehyde concentrations predicted. Science 173, 141–143.[CrossRef]
    [Google Scholar]
  28. Long, A. R. & Anthony, C. ( 1991; ). Characterization of the periplasmic cytochromes c of Paracoccus denitrificans: identification of the electron acceptor for methanol dehydrogenase, and description of a novel cytochrome c heterodimer. J Gen Microbiol 137, 415–425.[CrossRef]
    [Google Scholar]
  29. Mackenzie, C., Choudhary, M., Larimer, F. W., Predki, P. F., Stilwagen, S., Armitage, J. P., Barber, R. D., Donohue, T. J., Hosler, J. P. & other authors ( 2001; ). The home stretch, a first analysis of the nearly completed genome of Rhodobacter sphaeroides 2.4.1. Photosynth Res 70, 19–41.[CrossRef]
    [Google Scholar]
  30. Messing, J. ( 1979; ). A multipurpose cloning system based on the single-standed DNA bacteriophage, M13. Recomb DNA Tech Bull 2, 43–48.
    [Google Scholar]
  31. Mouncey, N. J., Gak, E., Choudhary, M., Oh, J. & Kaplan, S. ( 2000; ). Respiratory pathways of Rhodobacter sphaeroides 2.4.1T: identification and characterization of genes encoding quinol oxidases. FEMS Microbiol Lett 192, 205–210.[CrossRef]
    [Google Scholar]
  32. Neculai, A. M., Neculai, D., Griesinger, C., Vorholt, J. A. & Becker, S. ( 2005; ). A dynamic zinc redox switch. J Biol Chem 280, 2826–2830.[CrossRef]
    [Google Scholar]
  33. Ozcan, S. ( 1996; ). Pyrroloquinoline quinone (PQQ) synthesis is required for butanol metabolism. MS thesis, University of Wisconsin-La Crosse.
  34. Price, M. N., Huang, K. H., Alm, E. J. & Arkin, A. P. ( 2005; ). A novel method for accurate operon predictions in all sequenced prokaryotes. Nucleic Acids Res 33, 880–892.[CrossRef]
    [Google Scholar]
  35. Quayle, J. R. & Pfennig, N. ( 1975; ). Utilization of methanol by Rhodospirillaceae. Arch Microbiol 102, 193–198.[CrossRef]
    [Google Scholar]
  36. Ras, J., Reijnders, W. N., van Spanning, R. J., Harms, N., Oltmann, L. F. & Stouthamer, A. H. ( 1991; ). Isolation, sequencing, and mutagenesis of the gene encoding cytochrome c 553i of Paracoccus denitrificans and characterization of the mutant strain. J Bacteriol 173, 6971–6979.
    [Google Scholar]
  37. Rott, M. A., Fitch, J., Meyer, T. E. & Donohue, T. J. ( 1992; ). Regulation of a cytochrome c 2 isoform in wild-type and cytochrome c 2 mutant strains of Rhodobacter sphaeroides. Arch Biochem Biophys 292, 576–582.[CrossRef]
    [Google Scholar]
  38. Rott, M. A., Witthuhn, V. C., Schilke, B. A., Soranno, M., Ali, A. & Donohue, T. J. ( 1993; ). Genetic evidence for the role of isocytochrome c 2 in photosynthetic growth of Rhodobacter sphaeroides Spd mutants. J Bacteriol 175, 358–366.
    [Google Scholar]
  39. Sahm, H., Cox, R. B. & Quayle, J. R. ( 1976; ). Metabolism of methanol by Rhodopseudomonas acidophila. J Gen Microbiol 94, 313–322.[CrossRef]
    [Google Scholar]
  40. Saier, M. H., Jr ( 1994; ). Computer-aided analyses of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution. Microbiol Rev 58, 71–93.
    [Google Scholar]
  41. Saier, M. H., Jr ( 2000; ). A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev 64, 354–411.[CrossRef]
    [Google Scholar]
  42. Simon, R., Priefer, U. & Pühler, A. ( 1983; ). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio/Technology 1, 784–791.[CrossRef]
    [Google Scholar]
  43. Sistrom, W. R. ( 1960; ). A requirement for sodium in the growth of Rhodopseudomonas sphaeroides. J Gen Microbiol 22, 778–785.[CrossRef]
    [Google Scholar]
  44. Spallarossa, A., Forlani, F., Pagani, S., Salvati, L., Visca, P., Ascenzi, P., Bolognesi, M. & Bordo, D. ( 2003; ). Inhibition of Azotobacter vinelandii rhodanese by NO-donors. Biochem Biophys Res Commun 306, 1002–1007.[CrossRef]
    [Google Scholar]
  45. Spallarossa, A., Forlani, F., Carpen, A., Armirotti, A., Pagani, S., Bolognesi, M. & Bordo, D. ( 2004; ). The “rhodanese” fold and catalytic mechanism of 3-mercaptopyruvate sulfurtransferases: crystal structure of SseA from Escherichia coli. J Mol Biol 335, 583–593.[CrossRef]
    [Google Scholar]
  46. Vorholt, J. A., Marx, C. J., Lidstrom, M. E. & Thauer, R. K. ( 2000; ). Novel formaldehyde-activating enzyme in Methylobacterium extorquens AM1 required for growth on methanol. J Bacteriol 182, 6645–6650.[CrossRef]
    [Google Scholar]
  47. Zannoni, D., Melandri, B. A. & Baccarini-Melandri, A. ( 1976; ). Energy transduction in photosynthetic bacteria. X. Composition and function of the branched oxidase system in wild type and respiration deficient mutants of Rhodopseudomonas capsulata. Biochim Biophys Acta 423, 413–430.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/011346-0
Loading
/content/journal/micro/10.1099/mic.0.2007/011346-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error