1887

Abstract

Unlike the colicins, microcins and related peptide antibiotics, little is known about antibiotic proteins ( >10 000) from Gram-positive bacteria, since only few examples have been described to date. In this study we used heterologous expression of recombinant proteins to access the 17 kDa antibiotic protein SA-M57 from , along with two proteins of unknown function identified in publicly available databases: EF1097 from and YpkK from . Here we show that all three are antibiotic proteins with different spectra of antimicrobial activity that kill sensitive bacteria at nanomolar concentrations. structure predictions indicate that although the three proteins share little sequence similarity, they may be composed of conserved secondary structural elements: a relatively unstructured, acidic N-terminal portion and a basic C-terminal portion characterized by two helical elements separated by a loop structure and stabilized by an essential disulphide. Expression of individual segments as well as protein chimaeras revealed that, at least in the case of YpkK, the C-terminal portion is responsible for the killing action of the protein, whereas the role of the N-terminal portion remains unclear. Both and appear to be widely distributed in and (respectively), whereas is found only rarely amongst clinical isolates of . Finally, we determined that the proteins kill sensitive bacteria without lysis, a feature that distinguishes them from known murolytic proteins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/010777-0
2007-10-01
2020-08-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/10/3218.html?itemId=/content/journal/micro/10.1099/mic.0.2007/010777-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402
    [Google Scholar]
  2. Bonelli R. R., Wiedemann I., Sahl H.-G.. 2006; Chapter 16: Lantibiotics. In Handbook of Biologically Active Peptides pp97–105 Edited by Kastin A. J. Burlington: Academic Press;
  3. Bourgogne A., Hilsenbeck S. G., Dunny G. M., Murray B. E.. 2006; Comparison of OG1RF and an isogenic fsrB deletion mutant by transcriptional analysis: the Fsr system of Enterococcus faecalis is more than the activator of gelatinase and serine protease. J Bacteriol188:2875–2884
    [Google Scholar]
  4. Cascales E., Buchanan S. K., Duché D., Kleanthous C., Lloubès R., Postle K., Riley M., Slatin S., Cavard D.. 2007; Colicin biology. Microbiol Mol Biol Rev71:158–229
    [Google Scholar]
  5. Chenna R., Sugawara H., Koike T., Lopez R., Gibson T. J., Higgins D. G., Thompson J. D.. 2003; Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res31:3497–3500
    [Google Scholar]
  6. Cleveland J., Montville T. J., Nes I. F., Chikindas M. L.. 2001; Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol71:1–20
    [Google Scholar]
  7. Gasteiger E., Gattiker A., Hoogland C., Ivanyi I., Appel R. D., Bairoch A.. 2003; ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res31:3784–3788
    [Google Scholar]
  8. Gillor O., Kirkup B. C., Riley M. A.. 2004; Colicins and microcins: the next generation of antimicrobials. Adv Appl Microbiol54:129–146
    [Google Scholar]
  9. Han C. S., Xie G., Challacombe J. F., Altherr M. R., Bhotika S. S., Brown N., Bruce D., Campbell C. S., Campbell M. L.. other authors 2006; Pathogenomic sequence analysis of Bacillus cereus and Bacillus thuringiensis isolates closely related to Bacillus anthracis . J Bacteriol188:3382–3390
    [Google Scholar]
  10. Hanahan D.. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol166:557–580
    [Google Scholar]
  11. Heng N. C. K., Jack R. W.. 2006; Chapter 13: Microcins. In Handbook of Biologically Active Peptides pp75–82 Edited by Kastin A. J. Burlington: Academic Press;
  12. Heng N. C. K., Burtenshaw G. A., Jack R. W., Tagg J. R.. 2004; Sequence analysis of pDN571, a plasmid encoding novel bacteriocin production in M-type 57 Streptococcus pyogenes . Plasmid52:225–229
    [Google Scholar]
  13. Heng N. C. K., Ragland N. L., Swe P. M., Baird H. J., Inglis M. A., Tagg J. R., Jack R. W.. 2006a; Dysgalacticin: a novel, plasmid-encoded antimicrobial protein (bacteriocin) produced by Streptococcus dysgalactiae subsp. equisimilis . Microbiology152:1991–2001
    [Google Scholar]
  14. Heng N. C. K., Swe P. M., Ting Y.-T., Dufour M., Baird H. J., Ragland N. L., Burtenshaw G. A., Jack R. W., Tagg J. R.. 2006b; The large antimicrobial proteins (bacteriocins) of streptococci. In International Congress Series #1289: Conference Proceedings of the 16th Lancefield International Symposium on Streptococci and Streptococcal Diseases pp351–354 Edited by Sriprakash K. S. others Amsterdam: Elsevier;
  15. Heng N. C. K., Wescombe P. A., Burton J. P., Jack R. W., Tagg J. R.. 2007; The diversity of bacteriocins in Gram-positive bacteria. In Bacteriocins: Ecology and Evolution pp45–92 Edited by Riley M. A, Chavan M. A. Heidelberg: Springer-Verlag;
  16. Jack R. W., Wan J., Gordon J., Harmark K., Davidson B. E., Hillier A. J., Wettenhall R. E., Hickey M. W., Coventry M. J.. 1996; Characterization of the chemical and antimicrobial properties of piscicolin 126, a bacteriocin produced by Carnobacterium piscicola JG126. Appl Environ Microbiol62:2897–2903
    [Google Scholar]
  17. Jetten A. M., Vogels G. D.. 1972a; Nature and properties of a Staphylococcus epidermidis bacteriocin. J Bacteriol112:243–250
    [Google Scholar]
  18. Jetten A. M., Vogels G. D.. 1972b; Mode of action of a Staphylococcus epidermidis bacteriocin. Antimicrob Agents Chemother2:456–463
    [Google Scholar]
  19. Jetten A. M., Vogels G. D., de Windt F.. 1972; Production and purification of a Staphylococcus epidermidis bacteriocin. J Bacteriol112:235–242
    [Google Scholar]
  20. Joerger M. C., Klaenhammer T. R.. 1986; Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J Bacteriol167:439–446
    [Google Scholar]
  21. Joerger M. C., Klaenhammer T. R.. 1990; Cloning, expression, and nucleotide sequence of the Lactobacillus helveticus 481 gene encoding the bacteriocin helveticin . J. J Bacteriol172:6339–6347
    [Google Scholar]
  22. Kirkup B. C.. 2006; Bacteriocins as oral and gastrointestinal antibiotics: theoretical considerations, applied research, and practical applications. Curr Med Chem13:3335–3350
    [Google Scholar]
  23. Kleerebezem M., Boekhorst J., van Kranenburg R., Molenaar D., Kuipers O. P., Leer R., Tarchini R., Peters S. A., Sandbrink H. M.. other authors 2004; Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A100:1990–1995
    [Google Scholar]
  24. Nes I. F., Brede D. A., Holo H.. 2006; Chapter 17: The nonlantibiotic heat stable bacteriocins in Gram-positive bacteria. In Handbook of Biologically Active Peptides pp107–114 Edited by Kastin A. J. Burlington: Academic Press;
  25. Paulsen I. T., Banerjei L., Myers G. S., Nelson K. E., Seshadri R., Read T. D., Fouts D. E., Eisen J. A., Gill S. R.. other authors 2003; Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis . Science299:2071–2074
    [Google Scholar]
  26. Qin X., Singh K. V., Weinstock G. M., Murray B. E.. 2000; Effects of Enterococcus faecalis fsr genes on production of gelatinase and a serine protease and virulence. Infect Immun68:2579–2586
    [Google Scholar]
  27. Qin X., Singh K. V., Weinstock G. M., Murray B. E.. 2001; Characterization of fsr, a regulator controlling expression of gelatinase and serine protease in Enterococcus faecalis OG1RF. J Bacteriol183:3372–3382
    [Google Scholar]
  28. Rey M. W., Ramaiya P., Nelson B. A., Brody-Karpin S. D., Zaretsky E. J., Tang M., Lopez de Leon A., Xiang H., Gusti V.. other authors 2004; Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biol5:R77
    [Google Scholar]
  29. Ross R. P., Morgan S., Hill C.. 2002; Preservation and fermentation: past, present and future. Int J Food Microbiol79:3–16
    [Google Scholar]
  30. Rost B., Yachdav G., Liu J.. 2004; The PredictProtein server. Nucleic Acids Res32:W321–W326
    [Google Scholar]
  31. Sahl H.-G.. 1994; Staphylococcin 1580 is identical to the lantibiotic epidermin: implications for the nature of bacteriocins from Gram-positive bacteria. Appl Environ Microbiol 60:752–755
    [Google Scholar]
  32. Sambrook J., Russell D. W.. 2001; Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  33. Schäffer A. A., Aravind L., Madden T. L., Shavirin S., Spouge J. L., Wolf Y. I., Koonin E. V., Altschul S. F.. 2001; Improving the accuracy of psi-blast protein database searches with composition-based statistics and other refinements. Nucleic Acids Res29:2994–3005
    [Google Scholar]
  34. Schindler C. A., Schuhardt V. T.. 1964; Lysostaphin: a new bacteriolytic agent for the Staphylococcus . Proc Natl Acad Sci U S A51:414–421
    [Google Scholar]
  35. Simmonds R. S., Pearson L., Kennedy R. C., Tagg J. R.. 1996; Mode of action of a lysostaphin-like bacteriolytic agent produced by Streptococcus zooepidemicus 4881. Appl Environ Microbiol62:4536–4541
    [Google Scholar]
  36. Simmonds R. S., Simpson W. J., Tagg J. R.. 1997; Cloning and sequence analysis of zooA , a Streptococcus zooepidemicus gene encoding a bacteriocin-like inhibitory substance having a domain structure similar to that of lysostaphin. Gene189:255–261
    [Google Scholar]
  37. Staubitz P., Peschel A., Nieuwenhuizen W. F., Otto M., Götz F., Jung G., Jack R. W.. 2001; Structure-function relationships in the tryptophan-rich, antimicrobial peptide indolicidin. J Pept Sci7:552–564
    [Google Scholar]
  38. Tagg J. R., Bannister L. V.. 1979; “Fingerprinting” beta-haemolytic streptococci by their production of and sensitivity to bacteriocine-like inhibitors. J Med Microbiol12:397–411
    [Google Scholar]
  39. Tauch A., Bischoff N., Pühler A., Kalinowski J.. 2004; Comparative genomics identified two conserved DNA modules in a corynebacterial plasmid family present in clinical isolates of the opportunistic human pathogen Corynebacterium jeikeium . Plasmid52:102–118
    [Google Scholar]
  40. Thompson J. K., Collins M. A., Mercer W. D.. 1996; Characterization of a proteinaceous antimicrobial produced by Lactobacillus helveticus CNRZ450. J Appl Bacteriol80:338–348
    [Google Scholar]
  41. Vullo A., Frasconi P.. 2004; Disulfide connectivity prediction using recursive neural networks and evolutionary information. Bioinformatics20:653–659
    [Google Scholar]
  42. Wirawan R. E., Swanson K. M., Kleffmann T., Jack R. W., Tagg J. R.. 2007; Uberolysin: a novel cyclic bacteriocin produced by Streptococcus uberis . Microbiology153:1619–1630
    [Google Scholar]
  43. Zygmunt W. A., Tavormina P. A.. 1972; Lysostaphin: model for specific enzymatic approach to infectious disease. Prog Drug Res16:309–333
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/010777-0
Loading
/content/journal/micro/10.1099/mic.0.2007/010777-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error