-
Volume 153,
Issue 10,
2007
Volume 153, Issue 10, 2007
- Mini-Review
-
-
-
Candida albicans drug resistance – another way to cope with stress
There are relatively few classes of antifungal drugs. This restricts clinicians' therapeutic choices and these choices are further reduced by the emergence of drug resistance. Exposure to antifungal drugs represents an environmental stress for the fungal pathogen Candida albicans. The immediate response of C. albicans to antifungals may be drug tolerance, which can lead to drug resistance. This article examines C. albicans drug resistance from the perspective of it being a stress response and investigates how commonality with other stress-response pathways gives insights into the prospects for overcoming, or preventing, drug resistance.
-
-
- Biochemistry And Molecular Biology
-
-
-
ef1097 and ypkK encode enterococcin V583 and corynicin JK, members of a new family of antimicrobial proteins (bacteriocins) with modular structure from Gram-positive bacteria
Unlike the colicins, microcins and related peptide antibiotics, little is known about antibiotic proteins (M r>10 000) from Gram-positive bacteria, since only few examples have been described to date. In this study we used heterologous expression of recombinant proteins to access the 17 kDa antibiotic protein SA-M57 from Streptococcus pyogenes, along with two proteins of unknown function identified in publicly available databases: EF1097 from Enterococcus faecalis and YpkK from Corynebacterium jeikeium. Here we show that all three are antibiotic proteins with different spectra of antimicrobial activity that kill sensitive bacteria at nanomolar concentrations. In silico structure predictions indicate that although the three proteins share little sequence similarity, they may be composed of conserved secondary structural elements: a relatively unstructured, acidic N-terminal portion and a basic C-terminal portion characterized by two helical elements separated by a loop structure and stabilized by an essential disulphide. Expression of individual segments as well as protein chimaeras revealed that, at least in the case of YpkK, the C-terminal portion is responsible for the killing action of the protein, whereas the role of the N-terminal portion remains unclear. Both scnM57 and ef1097 appear to be widely distributed in Strep. pyogenes and Ent. faecalis (respectively), whereas ypkK is found only rarely amongst clinical isolates of C. jeikeium. Finally, we determined that the proteins kill sensitive bacteria without lysis, a feature that distinguishes them from known murolytic proteins.
-
-
-
-
Linear osmoregulated periplasmic glucans are encoded by the opgGH locus of Pseudomonas aeruginosa
More LessOsmoregulated periplasmic glucans (OPGs) are produced by many proteobacteria and are important for bacterial–host interactions. The opgG and opgH genes involved in the synthesis of OPGs are the most widely distributed genes in proteobacterial genomes. Two other non-homologous genes, both named ndvB, are also involved in OPG biosynthesis in several species. The Pseudomonas aeruginosa genome possesses two ORFs, PA5077 and PA5078, that show similarity to opgH and opgG of Pseudomonas syringae, respectively, and one ORF, PA1163, similar to ndvB of Sinorhizobium meliloti. Here, we report that the opgGH locus of P. aeruginosa PA14 is involved in the synthesis of linear polymers with β-1,2-linked glucosyl residues branched with a few β-1,6 glucosyl residues. Succinyl residues also substitute this glucose backbone. Transcription of opgGH is repressed by high osmolarity. Low osmolarity promotes the formation of highly structured biofilms, but biofilm development is slower and the area of biomass is reduced under high osmolarity. Biofilm development of an opgGH mutant grown under low osmolarity presents a similar phenotype to the wild-type biofilm grown under high osmolarity. These results suggest that OPGs are important for biofilm formation under conditions of low osmolarity. A previous study suggested that the P. aeruginosa ndvB gene is involved in the resistance of biofilms to antibiotics. We have shown that ndvB is not involved in the biosynthesis of the OPG described here, and opgGH do not appear to be involved in the resistance of P. aeruginosa PA14 biofilms to antibiotics.
-
-
-
Peptidoglycan N-acetylglucosamine deacetylation decreases autolysis in Lactococcus lactis
The gene xynD (renamed pgdA) of Lactococcus lactis IL1403 was shown to encode a peptidoglycan N-acetylglucosamine deacetylase. Inactivation of pgdA in L. lactis led to fully acetylated peptidoglycan, whereas cloning of pgdA on a multicopy plasmid vector resulted in an increased degree of peptidoglycan deacetylation, as shown by analysis of peptidoglycan constituent muropeptides. An increased amount of N-unsubstituted glucosamine residues in peptidoglycan resulted in a reduction of the rate of autolysis of L. lactis cells. The activity of the L. lactis major autolysin AcmA was tested on L. lactis cells or peptidoglycan with different degrees of de-N-acetylation. Deacetylated peptidoglycan exhibited decreased susceptibility to AcmA hydrolysis. This reduced susceptibility to AcmA did not result from reduced AcmA binding to peptidoglycan with an increasing degree of de-N-acetylation. In conclusion, enzymic N-acetylglucosamine deacetylation protects peptidoglycan from hydrolysis by the major autolysin AcmA in L. lactis cells, and this leads to decreased cellular autolysis.
-
-
-
Inhibition of bacteriophage replication in Streptococcus thermophilus by subunit poisoning of primase
More LessInvariant and highly conserved amino acids within a primase consensus sequence were targeted by site-specific mutations within the putative primase of Streptococcus thermophilus phage κ3. PCR products containing the desired mutation(s) within putative ATPase/helicase and/or oligomerization domains of the κ3-encoded primase gene were cloned into a high-copy-number vector and expressed in S. thermophilus NCK1125. The majority of the plasmid constructs failed to alter phage sensitivity; however, four of the constructs conferred strong phage resistance upon the host. Expression of the K238(A/T) and RR340-341AA mutant proteins in trans suppressed the function of the native phage primase protein in a dominant negative fashion via a proposed subunit poisoning mechanism. These constructs completely inhibited phage genome synthesis and reduced the efficiencies of plaquing and centre of infection formation by more than 9 and 3.5 logs, respectively. Amber mutations introduced upstream of the transdominant RR340-341AA and K238(A/T) mutations restored phage genome replication and sensitivity of the host, indicating that translation was required to confer phage resistance. Introduction of an E437A mutation in a putative oligomerization domain located downstream of the transdominant K238T mutation also completely suppressed phage resistance. This study appears to represent the first use of transdominant proteins to inhibit phages that are disruptive to cultures used in industrial fermentations.
-
-
-
Three 2-oxoacid dehydrogenase operons in Haloferax volcanii: expression, deletion mutants and evolution
More LessTwo unrelated protein families catalyse the oxidative decarboxylation of 2-oxoacids, i.e. the 2-oxoacid dehydrogenase complexes (OADHCs) and the 2-oxoacid ferredoxin oxidoreductases (OAFORs). In halophilic archaea, OAFORs were found to be responsible for decarboxylation of pyruvate and 2-oxoglutarate. Nevertheless, two gene clusters encoding OADHCs were found previously in Haloferax volcanii, but their biological function remained obscure. Here a third oadhc gene cluster of H. volcanii is presented. To characterize the function, the genes encoding the E1 subunit were inactivated in all three gene clusters by in-frame deletions. Under aerobic conditions none of the three mutants showed any phenotypic difference from the wild-type in various media. However, growth yields of two mutants were considerably lower than that of wild-type under nitrate-respirative conditions in complex medium. Northern blot analyses revealed (1) that polycistronic transcripts are formed and all three gene clusters are bona fide operons and (2) that transcription of all three operons is induced under anaerobic conditions compared to aerobic conditions. Taken together, the three H. volcanii enzymes do not fulfil one of the ‘usual’ aerobic functions of typical OADHCs, but decarboxylate an as-yet-unidentified novel substrate under anaerobic conditions. A survey of all 28 fully sequenced archaeal genomes revealed that nearly all archaea contain several OAFORs (three to four on average), suggesting that this protein family was already present in their last common ancestor. In contrast, only nine archaea encode one or two OADHCs, indicating that this protein family entered archaea by lateral transfer of the cognate genes from bacteria. This view is underscored by a phylogenetic tree of 33 archaeal and bacterial OADHCs.
-
-
-
Flavonoid inhibitors as novel antimycobacterial agents targeting Rv0636, a putative dehydratase enzyme involved in Mycobacterium tuberculosis fatty acid synthase II
Flavonoids comprise a large group of bioactive polyphenolic plant secondary metabolites. Several of these possess potent in vivo activity against Escherichia coli and Plasmodium falciparum, targeting enzymes involved in fatty acid biosynthesis, such as enoyl-ACP-reductase, β-ketoacyl-ACP reductase and β-hydroxyacyl-ACP dehydratase. Herein, we report that butein, isoliquirtigenin, 2,2′,4′-trihydroxychalcone and fisetin inhibit the growth of Mycobacterium bovis BCG. Furthermore, in vitro inhibition of the mycolic-acid-producing fatty acid synthase II (FAS-II) of Mycobacterium smegmatis suggests a mode of action related to those observed in E. coli and P. falciparum. Through a bioinformatic approach, we have established the product of Rv0636 as a candidate for the unknown mycobacterial dehydratase, and its overexpression in M. bovis BCG conferred resistance to growth inhibition by butein and isoliquirtigenin, and relieved inhibition of fatty acid and mycolic acid biosynthesis in vivo. Furthermore, after overexpression of Rv0636 in M. smegmatis, FAS-II was less sensitive to these inhibitors in vitro. Overall, the data suggest that these flavonoids are inhibitors of mycobacterial FAS-II and in particular Rv0636, which represents a strong candidate for the β-hydroxyacyl-ACP dehydratase enzyme of M. tuberculosis FAS-II.
-
-
-
dnaB and dnaI temperature-sensitive mutants of Staphylococcus aureus: evidence for involvement of DnaB and DnaI in synchrony regulation of chromosome replication
More LessDnaB and DnaI proteins conserved in low-GC content Gram-positive bacteria are apparently involved in helicase loading at the replication initiation site and during the restarting of stalled replication forks. In this study, we found five novel dnaB mutants and three novel dnaI mutants by screening 750 temperature-sensitive Gram-positive Staphylococcus aureus mutants. All of the mutants had a single amino acid substitution in either DnaB or DnaI that controlled temperature-sensitive growth, as confirmed by transduction experiments using phage 80α. DNA synthesis as measured by [3H]thymine incorporation, origin-to-terminus ratios and flow cytometric analysis revealed that the dnaB and dnaI mutants were unable to initiate DNA replication at restrictive temperatures, which is similar to previous findings in Bacillus subtilis. Furthermore, some of the mutants were found to exhibit asynchrony in the initiation of DNA replication. Also, a fraction of the dnaI mutant cells showed arrested replication, and the dnaI mutant tested was sensitive to mitomycin C, which causes DNA lesions. These results suggest that DnaB and DnaI are required not only for replication initiation and but also for regulation of its synchrony, and they provide support for the involvement of DnaI activity in the restart of arrested replication forks in vivo.
-
-
-
Functional and structural properties of CbpA, a collagen-binding protein from Arcanobacterium pyogenes
More LessArcanobacterium pyogenes, an opportunistic pathogen of economically important food animals, is the causative agent of liver abscesses in feedlot cattle, osteomyelitis in turkeys, and pneumonia and arthritis in pigs. Previous studies identified the first A. pyogenes adhesin, CbpA, a protein located on the bacterial surface which has the ability to bind collagen and promotes adhesion to the host cells. The protein has an N-terminal ligand-binding region (region A) and a C-terminal repetitive domain (region B). In this study we found that CbpA bound to almost all the collagen types tested but not to other proteins, and it displayed a propensity to interact with several collagenous peptides derived by CNBr cleavage of type I and II collagens. The K D values of CbpA for type I and II collagens and collagen peptides determined by solid-phase binding assay and intrinsic tryptophan fluorescence were in the range of 1–15 nM. It was also found that CbpA and its A region bound fibronectin, and that collagen and fibronectin interacted with distinct subsites. Anti-CbpA antibodies were effective at inhibiting both binding of isolated CbpA and bacterial adhesion to immobilized collagen, suggesting that CbpA is a functional collagen-binding adhesin. Analysis of the immunological cross-reactivity of CbpA with antibodies against other bacterial collagen-binding proteins indicated that CbpA is immunologically related to ACE from Enterococcus faecalis but not to CNA from Staphylococcus aureus or Acm from Enterococcus faecium. Far-UV and near-UV circular dichroism spectra showed that full-length CbpA and its region A are mainly composed of β-sheet with only a minor α-helical component and that both the proteins have a well-defined tertiary structure.
-
-
-
Osmotic regulation of expression of two extracellular matrix-binding proteins and a haemolysin of Leptospira interrogans: differential effects on LigA and Sph2 extracellular release
More LessThe life cycle of the pathogen Leptospira interrogans involves stages outside and inside the host. Entry of L. interrogans from moist environments into the host is likely to be accompanied by the induction of genes encoding virulence determinants and the concomitant repression of genes encoding products required for survival outside of the host. The expression of the adhesin LigA, the haemolysin Sph2 (Lk73.5) and the outer-membrane lipoprotein LipL36 of pathogenic Leptospira species have been reported to be regulated by mammalian host signals. A previous study demonstrated that raising the osmolarity of the leptospiral growth medium to physiological levels encountered in the host by addition of various salts enhanced the levels of cell-associated LigA and LigB and extracellular LigA. In this study, we systematically examined the effects of osmotic upshift with ionic and non-ionic solutes on expression of the known mammalian host-regulated leptospiral genes. The levels of cell-associated LigA, LigB and Sph2 increased at physiological osmolarity, whereas LipL36 levels decreased, corresponding to changes in specific transcript levels. These changes in expression occurred irrespective of whether sodium chloride or sucrose was used as the solute. The increase of cellular LigA, LigB and Sph2 protein levels occurred within hours of adding sodium chloride. Extracellular Sph2 levels increased when either sodium chloride or sucrose was added to achieve physiological osmolarity. In contrast, enhanced levels of extracellular LigA were observed only with an increase in ionic strength. These results indicate that the mechanisms for release of LigA and Sph2 differ during host infection. Thus, osmolarity not only affects leptospiral gene expression by affecting transcript levels of putative virulence determinants but also affects the release of such proteins into the surroundings.
-
-
-
Aerobic l-ascorbate metabolism and associated oxidative stress in Escherichia coli
More LessThe anaerobic utilization of l-ascorbate by gene products of the ula regulon in Escherichia coli has been widely documented. Under aerobic conditions, we have shown that this metabolism is only functional in the presence of casein acid hydrolysate. Transcriptional fusions and proteomic analysis indicated that both the ula regulon and the yiaK-S operon are required for the aerobic utilization of this compound. The aerobic dissimilation of l-ascorbate shares the function of three paralogous proteins, UlaD/YiaQ, UlaE/YiaR and UlaF/YiaS, which encode a decarboxylase, a 3-epimerase and a 4-epimerase, respectively. In contrast, l-ascorbate enters the cells through the ula-encoded phosphotransferase transport system, but it is not carried by the yiaMNO-encoded ABC transporter. Proteomic analysis also indicated enhanced expression of the alkyl hydroperoxide reductase encoded by the ahpC gene, suggesting a response to oxidative stress generated during the aerobic metabolism of l-ascorbate. Control of ahpC expression by the OxyR global regulator in response to l-ascorbate concentration is consistent with the formation of hydrogen peroxide under our experimental conditions. The presence of certain amino acids such as proline, threonine or glutamine in the culture medium allowed aerobic l-ascorbate utilization by Escherichia coli cells. This effect could be explained by the ability of these amino acids to allow yiaK-S operon induction by l-ascorbate, thus increasing the metabolic flux of l-ascorbate dissimilation. Alternatively, these amino acids may slow the rate of l-ascorbate oxidation.
-
-
-
A 7-dimethylallyltryptophan synthase from Aspergillus fumigatus: overproduction, purification and biochemical characterization
More LessA putative prenyltransferase gene, Afu3g12930, was identified in the genome sequence of Aspergillus fumigatus. EAL92290, encoded by Afu3g12930, consists of 472 aa, with a molecular mass of about 53 kDa. The coding sequence of Afu3g12930 was cloned in pQE60, and overexpressed in Escherichia coli. The soluble His6-fusion protein was purified to apparent homogeneity, and characterized biochemically. The enzyme was found to catalyse the prenylation of Trp at the C-7 position of the indole moiety, in the presence of dimethylallyl diphosphate (DMAPP); therefore, it functions as a 7-dimethylallyltryptophan synthase (7-DMATS). The structure of the enzymic product was elucidated by NMR and MS analysis. K m values were 67 μM for DMAPP, and 137 μM for l-Trp. Geranyl diphosphate was not accepted as prenyl donor, while Trp-containing dipeptides were found to be aromatic substrates of 7-DMATS. 7-DMATS did not need divalent metal ions for its enzymic reaction, although Ca2+ enhanced the reaction velocity slightly. The enzyme is the second dimethylallyltryptophan synthase identified in A. fumigatus. Interestingly, it shares a sequence identity of only 31 % at the amino acid level with another known dimethylallyltryptophan synthase, FgaPT2, from the same fungus; FgaPT2 prenylates l-Trp at the C-4 position of the indole ring. Afu3g12930 belongs to a putative biosynthetic gene cluster consisting of eight genes. Orthologous clusters were also identified in the genome sequences of Neosartorya fischeri and Aspergillus terreus. The putative roles of the genes in the cluster are discussed.
-
-
-
Phage display cDNA cloning and expression analysis of hydrophobins from the entomopathogenic fungus Beauveria (Cordyceps) bassiana
More LessHydrophobins are small amphipathic proteins that function in a broad range of growth and developmental processes in fungi. They are involved in the formation of aerial structures, the attachment of fungal cells to surfaces, and act in signalling in response to surface cues and pathogenesis. Beauveria bassiana is an important entomopathogenic fungus used as an arthropod biological control agent. To examine the feasibility of using phage display technology to clone cDNAs encoding hydrophobins, biopanning experiments were performed using a variety of affinity resins, including N,N′-diacetylchitobiose-, fucose-, lactose-, maltose- and melibiose-coupled agarose beads. After five rounds of iterative biopanning, cDNAs corresponding to two B. bassiana (class I) hydrophobins were selectively enriched using melibiose- or lactose-coupled agarose beads. Expression analysis revealed that the hyd1 gene was expressed in all samples tested, including aerial conidia, in vitro blastospores, submerged conidia, and cells sporulating on chitin and insect cuticle, with hyd1 expression peaking in growing mycelia. In contrast, the hyd2 gene was not appreciably expressed in any of the single-cell types (aerial conidia, blastospores and submerged conidia), but was constitutively expressed in growing mycelia and when cells were sporulating on chitin and insect cuticle. MS fingerprinting of an ∼10 kDa protein found in boiling SDS-insoluble, trifluoroacetic acid-soluble extracts from aerial conidia identified the major component of the B. bassiana rodlet layer to be the hyd2 gene product. These results reveal the differential regulation of the isolated hydrophobins and indicate that phage display represents a novel approach to cDNA cloning of hydrophobins.
-
- Biodiversity And Evolution
-
-
-
Intact-cell MALDI-TOF mass spectrometry analysis of peptaibol formation by the genus Trichoderma/Hypocrea: can molecular phylogeny of species predict peptaibol structures?
More LessPeptaibols are characteristic linear α-aminoisobutyrate-containing peptides produced by certain Ascomycetes, especially of the genus Hypocrea/Trichoderma [Hypocrea and Trichoderma are the names for the teleo- and anamorph forms of the same taxon; where known to occur in nature, the teleomorph is used to name the species. To aid the inexperienced reader, both names (the less well known one in parentheses) are given at the first mention of each species.] Here we have investigated whether phylogenetic relationships within Trichoderma permit a prediction of the peptaibol production profiles. To this end, representative strains from a third (28) of the known species of Trichoderma, identified by the sequences of diagnostic genes and covering most clades of the established multilocus phylogeny of Trichoderma/Hypocrea, were investigated by intact-cell MALDI-TOF mass spectrometry. Peptaibols were detected in all strains, and some strains were found to produce up to five peptide families of different sizes. Comparison of the data with phylogenies derived from rRNA spacer regions (ITS1 and 2) and RNA polymerase subunit B (rpb2) gene sequences did not show a strict correlation with the types and sequences of the peptaibols produced, but the production of some groups of peptaibols appears to be found only in some clades or sections of the genus, which could be used for more targeted screening of novel compounds of this type. In an analysis of peptaibol structures, we have defined conserved key positions and have further identified and compared sequences of the corresponding adenylate domains within non-ribosomal peptide synthetases producing trichovirins, paracelsins and atroviridins. These phylogenies are not concordant with those of their producers Hypocrea virens, Hypocrea jecorina and Hypocrea atroviridis as obtained from ITS1 and 2, and rpb2, respectively, and therefore hint at a complex history of peptaibol diversity.
-
-
-
-
Phylogenetic diversity of ‘Endomicrobia’ and their specific affiliation with termite gut flagellates
More Less‘Endomicrobia’, a distinct and diverse group of uncultivated bacteria in the candidate phylum Termite Group I (TG-1), have been found exclusively in the gut of lower termites and wood-feeding cockroaches. In a previous study, we had demonstrated that the ‘Endomicrobia’ clones retrieved from Reticulitermes santonensis represent intracellular symbionts of the two major gut flagellates of this termite. Here, we document that ‘Endomicrobia’ are present also in many other gut flagellates of lower termites. Phylogeny and host specificity of ‘Endomicrobia’ were investigated by cloning and sequencing of the small subunit rRNA genes of the flagellate and the symbionts, which originated from suspensions of individual flagellates isolated by micropipette. Each flagellate harboured a distinct phylogenetic lineage of ‘Endomicrobia’. The results of fluorescent in situ hybridization with ‘Endomicrobia’-specific oligonucleotide probes corroborated that ‘Endomicrobia’ are intracellular symbionts specifically affiliated with their flagellate hosts. Interestingly, the ‘Endomicrobia’ sequences obtained from flagellates belonging to the genus Trichonympha formed a monophyletic group, suggesting co-speciation between symbiont and host.
-
-
-
Phylogenetic analysis of Trichophyton mentagrophytes human and animal isolates based on MnSOD and ITS sequence comparison
Dermatophytes are keratinophilic fungi able to infect keratinized tissues of human or animal origin. Among them, Trichophyton mentagrophytes is known to be a species complex composed of several species or variants, which occur in both human and animals. Since the T. mentagrophytes complex includes both anthropophilic and zoophilic pathogens, accurate molecular identification is a critical issue for comprehensive understanding of the clinical and epidemiological implications of the genetic heterogeneity of this complex. Here, 41 T. mentagrophytes isolates from either human patients (14 isolates) or animals (27 isolates) with dermatophytosis were prospectively isolated by culture and identified on morphological bases at the University Hospital Centres of Lille and Poitiers, and the Veterinary School of Alfort, respectively. The isolates were differentiated by DNA sequencing of the variable internal transcribed spacer (ITS) regions flanking the 5.8S rDNA, and of the housekeeping gene encoding the manganese-containing superoxide dismutase (MnSOD), an enzyme which is involved in defence against oxidative stress and has previously provided interesting insight into both fungal taxonomy and phylogeny. ITS1-ITS2 regions and MnSOD sequences successfully differentiate between members of the T. mentagrophytes complex and the related species Trichophyton rubrum. Whatever the phylogenetic marker used, members of this complex were classified into two major clades exhibiting a similar topology, with a higher variability when the ITS marker was used. Relationships between ITS/MnSOD sequences and host origin, clinical pattern and phenotypic characteristics (macroscopic and microscopic morphologies) were analysed.
-
-
-
Molecular analysis of the distribution and phylogeny of dissimilatory adenosine-5′-phosphosulfate reductase-encoding genes (aprBA) among sulfur-oxidizing prokaryotes
More LessDissimilatory adenosine-5′-phosphosulfate (APS) reductase (AprBA) is a key enzyme of the dissimilatory sulfate-reduction pathway. Homologues have been found in photo- and chemotrophic sulfur-oxidizing prokaryotes (SOP), in which they are postulated to operate in the reverse direction, oxidizing sulfite to APS. Newly developed PCR assays allowed the amplification of 92–93 % (2.1–2.3 kb) of the APS reductase locus aprBA. PCR-based screening of 116 taxonomically divergent SOP reference strains revealed a distribution of aprBA restricted to photo- and chemotrophs with strict anaerobic or at least facultative anaerobic lifestyles, including Chlorobiaceae, Chromatiaceae, Thiobacillus, Thiothrix and invertebrate symbionts. In the AprBA-based tree, the SOP diverge into two distantly related phylogenetic lineages, Apr lineages I and II, with the proteins of lineage II (Chlorobiaceae and others) in closer affiliation to the enzymes of the sulfate-reducing prokaryotes (SRP). This clustering is discordant with the dissimilatory sulfite reductase (DsrAB) phylogeny and indicates putative lateral aprBA gene transfer from SRP to the respective SOB lineages. In support of lateral gene transfer (LGT), several beta- and gammaproteobacterial species harbour both aprBA homologues, the DsrAB-congruent ‘authentic’ and the SRP-related, LGT-derived gene loci, while some relatives possess exclusively the SRP-related apr genes as a possible result of resident gene displacement by the xenologue. The two-gene state might be an intermediate in the replacement of the resident essential gene. Collected genome data demonstrate the correlation between the AprBA tree topology and the composition/arrangement of the apr gene loci (occurrence of qmoABC or aprM genes) from SRP and SOP of lineages I and II. The putative functional role of the SRP-related APS reductases in photo- and chemotrophic SOP is discussed.
-
- Environmental Microbiology
-
-
-
Overexpressing antioxidant enzymes enhances naphthalene biodegradation in Pseudomonas sp. strain As1
More LessWe tested the hypothesis that during metabolism of naphthalene and other substrates by Pseudomonas sp. strain As1 oxidative stress arises and can be reduced by antioxidant enzymes. Our approach was to prepare plasmid constructs that conferred expression of two single antioxidant enzymes [Fpr (ferredoxin-NADP+ reductase) and SOD (superoxide dismutase)] and the pair of enzymes SOD plus AhpC (alkyl hydroperoxide reductase). The fpr, sodA and ahpC genes were placed under the transcriptional control of both the constitutive lac promoter and their respective native promoters. Both HPLC and growth-rate analyses showed that naphthalene metabolism was enhanced in the recombinant strains. All antioxidant-overexpressing recombinant strains, with the exception of one with an upregulated sodA gene due to the lac promoter [strain As1(sodA)], exhibited resistance to the superoxide generating agent paraquat (PQ). The growth of strain As1(sodA) was inhibited by PQ, but this growth defect was rapidly overcome by the simultaneous overproduction of AhpC, which is a known hydrogen peroxide scavenger. After PQ-induced oxidative damage of the [Fe–S] enzyme aconitase, recovery of enzyme activity was enhanced in the recombinant strains. Reporter strains to monitor oxidative stress in strain As1 were prepared by fusing gfp (encoding green fluorescent protein, GFP) to the fpr promoter. Growth on salicylate and naphthalene boosted the GFP fluorescent signal 21- and 14-fold, respectively. Using these same oxidative stress reporters, overexpression of fpr and sodA was found to considerably reduce PQ-induced stress. Taken together, these data demonstrate that the overproduction of Fpr or SodA contributes to oxidative tolerance during naphthalene degradation; however, elevated SOD activity may trigger the generation of excess hydrogen peroxide, resulting in cell death.
-
-
-
-
Surface characteristics of the entomopathogenic fungus Beauveria (Cordyceps) bassiana
More LessMarked differences in surface characteristics were observed among three types of single-cell propagules produced by the entomopathogenic fungus Beauveria bassiana. Atomic force microscopy (AFM) revealed the presence of bundles or fascicles in aerial conidia absent from in vitro blastospores and submerged conidia. Contact angle measurements using polar and apolar test liquids placed on cell layers were used to calculate surface tension values and the free energies of interaction of the cell types with surfaces. These analyses indicated that the cell surfaces of aerial conidia were hydrophobic, whereas those of blastospores and submerged conidia were hydrophilic. Zeta potential determinations of the electrostatic charge distribution across the surface of the cells varied from +22 to −30 mV for 16-day aerial conidia at pH values ranging from 3 to 9, while the net surface charge ranged from +10 to −13 mV for submerged conidia, with much less variation observed for blastospores, +4 to −4 mV, over the same pH range. Measurements of hydrophobicity using microbial adhesion to hydrocarbons (MATH) indicated that the surfaces of aerial conidia were hydrophobic, and those of blastospores hydrophilic, whereas submerged conidia displayed cell surface characteristics on the borderline between hydrophobic and hydrophilic. Insect pathology assays using tobacco budworm (Heliothis virescens) larvae revealed some variation in virulence among aerial conidia, in vitro blastospores and submerged conidia, using both topical application and haemocoel injection of the fungal cells.
-
- Genes And Genomes
-
-
-
Comparative transcriptomics reveals key gene expression differences between the human and bovine pathogens of the Mycobacterium tuberculosis complex
Members of the Mycobacterium tuberculosis complex show distinct host preferences, yet the molecular basis for this tropism is unknown. Comparison of the M. tuberculosis and Mycobacterium bovis genome sequences revealed no unique genes in the bovine pathogen per se, indicating that differences in gene expression may play a significant role in host predilection. To define the key gene expression differences between M. tuberculosis and M. bovis we have performed transcriptome analyses of cultures grown under steady-state conditions in a chemostat. This revealed that the human and bovine pathogens show differential expression of genes encoding a range of functions, including cell wall and secreted proteins, transcriptional regulators, PE/PPE proteins, lipid metabolism and toxin–antitoxin pairs. Furthermore, we probed the gene expression response of M. tuberculosis and M. bovis to an acid-shock perturbation which triggered a notably different expression response in the two strains. Through these approaches we have defined a core gene set that shows differential expression between the human and bovine tubercle bacilli, and the biological implications are discussed.
-
-
Volumes and issues
-
Volume 171 (2025)
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
Most Read This Month
