1887

Abstract

The gene codes for a putative copper-translocating P-type ATPase and the downstream gene codes for a copper chaperone. Genome database analyses demonstrate that these copper transport genes are highly conserved in . The expression of and was inducible by copper and to some extent by ferric and lead ions. A mutant strain containing a partially deleted gene was more sensitive than the parent strain to copper, ferric and lead ions. The copper-sensitive phenotype was due to the accumulation of intracellular copper and thus the product is involved in the export of copper ions. The metal-sensitive phenotype of the mutant was complemented by a 2.7 kbp DNA containing . We have cloned and overexpressed the metal-binding domains of CopA and CopZ and have shown by site-directed mutagenesis that the cysteine residues in the CXXC metal-binding motif in CopA are involved in copper binding and thus play an important role in copper transport in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/009860-0
2007-12-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/12/4274.html?itemId=/content/journal/micro/10.1099/mic.0.2007/009860-0&mimeType=html&fmt=ahah

References

  1. Allemandou, F., Nussberger, J., Brunner, H. R. & Brakch, N. ( 2003; ). Rapid site-directed mutagenesis using two-PCR-generated DNA fragments reproducing the plasmid template. J Biomed Biotechnol 2003, 202–207.[CrossRef]
    [Google Scholar]
  2. Archer, G. L. ( 1998; ). Staphylococcus aureus: a well-armed pathogen. Clin Infect Dis 26, 1179–1181.[CrossRef]
    [Google Scholar]
  3. Arguello, J. M., Mandal, A. K. & Mana-Capelli, S. ( 2003; ). Heavy metal transport CPx-ATPases from the thermophile Archaeoglobus fulgidus. Ann N Y Acad Sci 986, 212–218.[CrossRef]
    [Google Scholar]
  4. Bae, T. & Schneewind, O. ( 2006; ). Allelic replacement in Staphylococcus aureus with inducible counter-selection. Plasmid 55, 58–63.[CrossRef]
    [Google Scholar]
  5. Bremner, I. ( 1998; ). Manifestations of copper excess. Am J Clin Nutr 67 (5 Suppl.), 1069S–1073S.
    [Google Scholar]
  6. Brenner, A. J. & Harris, E. D. ( 1995; ). A quantitative test for copper using bicinchoninic acid. Anal Biochem 226, 80–84.[CrossRef]
    [Google Scholar]
  7. Cabrera, G., Xiong, A., Uebel, M., Singh, V. K. & Jayaswal, R. K. ( 2001; ). Molecular characterization of the iron-hydroxamate uptake system in Staphylococcus aureus. Appl Environ Microbiol 67, 1001–1003.[CrossRef]
    [Google Scholar]
  8. Cooksey, D. A. ( 1993; ). Copper uptake and resistance in bacteria. Mol Microbiol 7, 1–5.[CrossRef]
    [Google Scholar]
  9. Deigweiher, K., Drell, T. L., Prutsch, A., Scheidig, A. J. & Lubben, M. ( 2004; ). Expression, isolation, and crystallization of the catalytic domain of copB, a putative copper transporting ATPase from the thermoacidophilic archaeon Sulfolobus solfataricus. J Bioenerg Biomembranes 36, 151–159.[CrossRef]
    [Google Scholar]
  10. DiDonato, M., Narindrasorasak, S., Forbes, J. R., Cox, D. W. & Sarkar, B. ( 1997; ). Expression, purification, and metal-binding properties of the N-terminal domain from the Wilson disease putative copper-transporting ATPase (ATP7B). J Biol Chem 272, 33279–33282.[CrossRef]
    [Google Scholar]
  11. Gaballa, A. & Helmann, J. D. ( 2003; ). Bacillus subtilis CPx-type ATPases: characterization of Cd, Zn, Co and Cu efflux systems. Biometals 16, 497–505.[CrossRef]
    [Google Scholar]
  12. Gaetke, L. M. & Chow, C. K. ( 2003; ). Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189, 147–163.[CrossRef]
    [Google Scholar]
  13. Gatti, D., Mitra, B. & Rosen, B. P. ( 2000; ). Escherichia coli soft metal ion-translocating ATPases. J Biol Chem 275, 34009–34012.[CrossRef]
    [Google Scholar]
  14. Harrison, M. D., Jones, C. E., Solioz, M. & Dameron, C. T. ( 2000; ). Intracellular copper routing: the role of copper chaperones. Trends Biochem Sci 25, 29–32.[CrossRef]
    [Google Scholar]
  15. Horsburgh, M. J., Aish, J. L., White, I. J., Shaw, L., Lithgow, J. K. & Foster, S. J. ( 2002; ). σ B modulates virulence determinant expression and stress resistance: characterization of a functional rsbU strain derived from Staphylococcus aureus 8325-4. J Bacteriol 184, 5457–5467.[CrossRef]
    [Google Scholar]
  16. Huffman, D. L. & O'Halloran, T. V. ( 2001; ). Function, structure, and mechanism of intracellular copper trafficking proteins. Annu Rev Biochem 70, 677–701.[CrossRef]
    [Google Scholar]
  17. Kreiswirth, B. N., Lofdahl, M. S., Betley, M. J., O' Reilly, M., Schlievert, P. M., Bergdoll, M. S. & Novick, R. P. ( 1983; ). The toxic shock syndrome exotoxin structural gene is not detectably transmitted by prophage. Nature 305, 709–712.[CrossRef]
    [Google Scholar]
  18. Lee, C. Y., Schmidt, J. J., Johnson-Winergar, A. D., Spero, L. & Iandolo, J. J. ( 1987; ). Sequence determination and comparison of the exfoliative toxin A and toxin B genes from Staphylococcus aureus. J Bacteriol 169, 3904–3909.
    [Google Scholar]
  19. Lutsenko, S. & Kaplan, J. H. ( 1995; ). Organization of P-type ATPases: significance of structural diversity. Biochemistry 34, 15607–15613.[CrossRef]
    [Google Scholar]
  20. Lutsenko, S., Petrukhin, K., Cooper, M. J., Gilliam, C. T. & Kaplan, J. H. ( 1997; ). N-terminal domains of human copper-transporting adenosine triphosphatases (the Wilson's and Menkes disease proteins) bind copper selectively in vivo and in vitro with stoichiometry of one copper per metal binding repeat. J Biol Chem 272, 18939–18944.[CrossRef]
    [Google Scholar]
  21. Mason, H. S. ( 1976; ). Binuclear copper clusters as active sites for oxidases. Adv Exp Med Biol 74, 464–469.
    [Google Scholar]
  22. Massaro, E. J. ( 2002; ). Handbook of Copper Toxicology, pp. 624. Totowa, NJ: Humana Press.
  23. Multhaup, G., Strausak, D., Bissig, K. D. & Solioz, M. ( 2001; ). Interaction of the CopZ copper chaperone with the CopA copper ATPase of Enterococcus hirae assessed by surface plasmon resonance. Biochem Biophys Res Commun 288, 172–177.[CrossRef]
    [Google Scholar]
  24. Nicholas, K. M., Wentworth, P., Harwig, C. W., Wentworth, A., Shafton, D. & Janda, K. D. ( 2002; ). A cofactor approach to copper-dependent catalytic antibodies. Proc Natl Acad Sci U S A 99, 2648–2653.[CrossRef]
    [Google Scholar]
  25. Pierre, J. L. & Fontecave, M. ( 1999; ). Iron and activated oxygen species in biology: the basic chemistry. Biometals 12, 195–199.[CrossRef]
    [Google Scholar]
  26. Pufahl, R. A., Singer, C. P., Peariso, K. L., Lin, S. J., Schmidt, P. J., Fahrni, C. J., Culotta, C., Penner-Hahn, J. E. & O'Halloran, T. V. ( 1997; ). Metal ion chaperone function of the soluble Cu(I) receptor Atx1. Science 278, 853–856.[CrossRef]
    [Google Scholar]
  27. Radford, D. S., Kihlken, M. A., Borrelly, G. P., Harwood, C. R., Le Brun, N. E. & Caver, J. S. ( 2003; ). CopZ from Bacillus subtilis interacts in vivo with a copper exporting CPx-type ATPase CopA. FEMS Microbiol Lett 220, 105–112.[CrossRef]
    [Google Scholar]
  28. Rensing, C., Bin, F., Sharma, R., Mitra, B. & Rosen, B. P. ( 2000; ). CopA: an Escherichia coli Cu(I)-translocating P-type ATPase. Proc Natl Acad Sci U S A 97, 652–656.[CrossRef]
    [Google Scholar]
  29. Sambrook, J. & Russell, D. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  30. Silver, S. & Phung, L. T. ( 1996; ). Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50, 753–789.[CrossRef]
    [Google Scholar]
  31. Singh, V. K., Xiong, A., Usgaard, T., Chakrabarty, S., Deora, R., Misra, T. & Jayaswal, R. K. ( 1999; ). ZntR is an autoregulatory protein and negatively regulates the chromosomal zinc resistance operon of S. aureus. Mol Microbiol 33, 200–207.[CrossRef]
    [Google Scholar]
  32. Sitthisak, S., Howieson, K., Amezola, C. & Jayaswal, R. K. ( 2005; ). Characterization of a multicopper oxidase gene from Staphylococcus aureus. Appl Environ Microbiol 71, 5650–5653.[CrossRef]
    [Google Scholar]
  33. Solioz, M. & Stoyanov, J. V. ( 2003; ). Copper homeostasis in Enterococcus hirae. FEMS Microbiol Rev 27, 183–195.[CrossRef]
    [Google Scholar]
  34. Solioz, M. & Vulpe, C. ( 1996; ). CPx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends Biochem Sci 21, 237–241.[CrossRef]
    [Google Scholar]
  35. Townsend, D. E. & Wilkinson, B. J. ( 1992; ). Proline transport in Staphylococcus aureus: a high-affinity system and a low-affinity system involved in osmoregulation. J Bacteriol 174, 2702–2710.
    [Google Scholar]
  36. van Bakel, H., Huynen, M. & Wijmenga, C. ( 2004; ). Prokaryotic diversity of the Saccharomyces cerevisiae Atx1p-mediated copper pathway. Bioinformatics 20, 2644–2655.[CrossRef]
    [Google Scholar]
  37. van Bakel, H., Strengman, E., Wijmenga, C. & Holstege, F. C. ( 2005; ). Gene expression profiling and phenotype analyses of S. cerevisiae in response to changing copper reveals six genes with new roles in copper and iron metabolism. Physiol Genomics 22, 356–367.[CrossRef]
    [Google Scholar]
  38. Walker, J. M., Tsivkovskii, R. & Lutsenko, S. ( 2002; ). Metallochaperone Atox1 transfers copper to the NH2-terminal domain of the Wilson's disease protein and regulates its catalytic activity. J Biol Chem 277, 27953–27959.[CrossRef]
    [Google Scholar]
  39. Walker, J. M., Huster, D., Ralle, M., Morgan, C. T., Blackburn, N. J. & Lutsenko, S. ( 2004; ). The N-terminal metal-binding site 2 of the Wilson's disease protein plays a key role in the transfer of copper from atox1. J Biol Chem 279, 15376–15384.[CrossRef]
    [Google Scholar]
  40. Xiong, A. & Jayaswal, R. K. ( 1998; ). Molecular characterization of a chromosomal determinant conferring resistance to zinc and cobalt ions in Staphylococcus aureus. J Bacteriol 180, 4024–4029.
    [Google Scholar]
  41. Xiong, A., Singh, V. K., Cabrera, G. & Jayaswal, R. K. ( 2000; ). Molecular characterization of a ferric uptake regulator, Fur, from Staphylococcus aureus. Microbiology 146, 659–668.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/009860-0
Loading
/content/journal/micro/10.1099/mic.0.2007/009860-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error