1887

Abstract

Intractable biofilm infections with are the major cause of premature death associated with cystic fibrosis (CF). Few studies have explored the biofilm developmental cycle of isolates from chronically infected individuals. This study shows that such clinical isolates exhibit biofilm differentiation and dispersal processes similar to those of the better-studied laboratory strain PAO1 in the glass flow-cell (continuous-culture) biofilm model, albeit they are initially less adherent and their microcolonies are slower to develop and show heterogeneous, strain-specific variations in architecture. Confocal scanning laser microscopy combined with LIVE/DEAD viability staining revealed that in all CF biofilms bacterial cell death occurred in maturing biofilms, extending from the substratum to the central regions of mature microcolonies to varying degrees, depending on the strain. Bacteriophage activity was detected in the maturing biofilms of all CF strains examined and the amount of phage produced paralleled the degree of cell death seen in the biofilm. Some CF strains exhibited ‘seeding dispersal’ associated with the above phenomena, producing ‘hollowing’ as motile cells evacuated from the microcolony interiors as has been described for strain PAO1. Moreover, morphotypic cell variants were seen in the biofilm effluents of all CF strains. For those CF strains where marked cell death and seeding dispersal occurred in the microcolonies, variants were more diverse (up to five morphotypes) compared to those of strain PAO1 (two morphotypes). Given that variants of strain PAO1 have enhanced colonization traits, it seems likely that the similar biofilm dispersal events described here for CF strains contribute to the variability seen in clinical isolates and the overall persistence of the in the CF airway.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/009092-0
2007-10-01
2019-12-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/10/3264.html?itemId=/content/journal/micro/10.1099/mic.0.2007/009092-0&mimeType=html&fmt=ahah

References

  1. Armstrong, D. S., Nixon, G. M., Carzino, R., Bigham, A., Carlin, J. B., Robins-Browne, R. M. & Grimwood, K. ( 2002; ). Detection of a widespread clone of Pseudomonas aeruginosa in a pediatric cystic fibrosis clinic. Am J Respir Crit Care Med 166, 983–987.[CrossRef]
    [Google Scholar]
  2. Barraud, N., Hassett, D. J., Hwang, S. H., Rice, S. A., Kjelleberg, S. & Webb, J. S. ( 2006; ). Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol 188, 7344–7353.[CrossRef]
    [Google Scholar]
  3. Boles, B. R., Thoendel, M. & Singh, P. K. ( 2004; ). Self-generated diversity produces “insurance effects” in biofilm communities. Proc Natl Acad Sci U S A 101, 16630–16635.[CrossRef]
    [Google Scholar]
  4. Burns, J. L., Gibson, R. L., McNamara, S., Yim, D., Emerson, J., Rosenfeld, M., Hiatt, P., McCoy, K., Castile, R. & other authors ( 2001; ). Longitudinal assessment of Pseudomonas aeruginosa in young children with cystic fibrosis. J Infect Dis 183, 444–452.[CrossRef]
    [Google Scholar]
  5. Costerton, J. W., Stewart, P. S. & Greenberg, E. P. ( 1999; ). Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322.[CrossRef]
    [Google Scholar]
  6. D'Argenio, D. A., Calfee, M. W., Rainey, P. B. & Pesci, E. C. ( 2002; ). Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants. J Bacteriol 184, 6481–6489.[CrossRef]
    [Google Scholar]
  7. D'Argenio, D. A., Wu, M., Hoffman, L. R., Kulasekara, H. D., Déziel, E., Smith, E. E., Nguyen, H., Ernst, R. K., Larson Freeman, T. J. & other authors ( 2007; ). Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients. Mol Microbiol 64, 512–533.[CrossRef]
    [Google Scholar]
  8. Deziel, E., Comeau, Y. & Villemur, R. ( 2001; ). Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. J Bacteriol 183, 1195–1204.[CrossRef]
    [Google Scholar]
  9. Deziel, E., Lepine, F., Milot, S., He, J., Mindrinos, M. N., Tompkins, R. G. & Rahme, L. G. ( 2004; ). Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci U S A 101, 1339–1344.[CrossRef]
    [Google Scholar]
  10. Diggle, S. P., Winzer, K., Lazdunski, A., Williams, P. & Cámara, M. ( 2002; ). Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expression. J Bacteriol 184, 2576–2586.[CrossRef]
    [Google Scholar]
  11. Diggle, S. P., Winzer, K., Chhabra, S. R., Worrall, K. E., Cámara, M. & Williams, P. ( 2003; ). The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol 50, 29–43.[CrossRef]
    [Google Scholar]
  12. Drenkard, E. & Ausubel, F. M. ( 2002; ). Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416, 740–743.[CrossRef]
    [Google Scholar]
  13. Eisenstark, A. ( 1967; ). Bacteriophage techniques. In Methods in Virology, vol. 1, pp. 449–524. Edited by K. Maramorosch & H. Koprowski. New York: Academic Press.
  14. Foweraker, J. E., Laughton, C. R., Brown, D. F. & Bilton, D. ( 2005; ). Phenotypic variability of Pseudomonas aeruginosa in sputa from patients with acute infective exacerbation of cystic fibrosis and its impact on the validity of antimicrobial susceptibility testing. J Antimicrob Chemother 55, 921–927.[CrossRef]
    [Google Scholar]
  15. Hall, L. M. & Henderson-Begg, S. K. ( 2006; ). Hypermutable bacteria isolated from humans – a critical analysis. Microbiology 152, 2505–2514.[CrossRef]
    [Google Scholar]
  16. Hassett, D. J., Cuppoletti, J., Trapnell, B., Lymar, S. V., Rowe, J. J., Yoon, S. S., Hilliard, G. M., Parvatiyar, K., Kamani, M. C. & other authors ( 2002; ). Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways: rethinking antibiotic treatment strategies and drug targets. Adv Drug Deliv Rev 54, 1425–1443.[CrossRef]
    [Google Scholar]
  17. Head, N. E. & Yu, H. ( 2004; ). Cross-sectional analysis of clinical and environmental isolates of Pseudomonas aeruginosa: biofilm formation, virulence, and genome diversity. Infect Immun 72, 133–144.[CrossRef]
    [Google Scholar]
  18. Hentzer, M., Teitzel, G. M., Balzer, G. J., Heydorn, A., Molin, S., Givskov, M. & Parsek, M. R. ( 2001; ). Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 183, 5395–5401.[CrossRef]
    [Google Scholar]
  19. Hentzer, M., Eberl, L. & Givskov, M. ( 2005; ). Transcriptome analysis of Pseudomonas aeruginosa biofilm development: anaerobic respiration and iron limitation. Biofilms 2, 37–61.[CrossRef]
    [Google Scholar]
  20. Heurlier, K., Denervaud, V., Haenni, M., Guy, L., Krishnapillai, V. & Haas, D. ( 2005; ). Quorum-sensing-negative (lasR) mutants of Pseudomonas aeruginosa avoid cell lysis and death. J Bacteriol 187, 4875–4883.[CrossRef]
    [Google Scholar]
  21. Heydorn, A., Ersboll, B., Kato, J., Hentzer, M., Parsek, M. R., Tolker-Nielsen, T., Givskov, M. & Molin, S. ( 2002; ). Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Appl Environ Microbiol 68, 2008–2017.[CrossRef]
    [Google Scholar]
  22. Hitch, G., Pratten, J. & Taylor, P. W. ( 2004; ). Isolation of bacteriophages from the oral cavity. Lett Appl Microbiol 39, 215–219.[CrossRef]
    [Google Scholar]
  23. Holloway, B. W. ( 1955; ). Genetic recombination in Pseudomonas aeruginosa. J Gen Microbiol 13, 572–581.[CrossRef]
    [Google Scholar]
  24. Kenna, D. T., Doherty, C. J., Foweraker, J., Macaskill, L., Barcus, V. A. & Govan, J. R. W. ( 2007; ). Hypermutability in environmental Pseudomonas aeruginosa and in populations causing pulmonary infection in individuals with cystic fibrosis. Microbiology 153, 1852–1859.[CrossRef]
    [Google Scholar]
  25. Kirisits, M. J., Prost, L., Starkey, M. & Parsek, M. R. ( 2005; ). Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 71, 4809–4821.[CrossRef]
    [Google Scholar]
  26. Kirov, S. M., Webb, J. S. & Kjelleberg, S. ( 2005; ). Clinical significance of seeding dispersal in biofilms. Microbiology 151, 3452–3453.[CrossRef]
    [Google Scholar]
  27. Klausen, M., Heydorn, A., Ragas, P., Lambertsen, L., Aaes-Jorgensen, A., Molin, S. & Tolker-Nielsen, T. ( 2003; ). Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48, 1511–1524.[CrossRef]
    [Google Scholar]
  28. Koh, K. S., Lam, K. W., Alhede, M., Queck, S. Y., Labbate, M., Kjelleberg, S. & Rice, S. A. ( 2007; ). Phenotypic diversification and adaptation of Serratia marcescens MG1 biofilm-derived morphotypes. J Bacteriol 189, 119–130.[CrossRef]
    [Google Scholar]
  29. Lee, B., Haagensen, J. A., Ciofu, O., Andersen, J. B., Hoiby, N. & Molin, S. ( 2005; ). Heterogeneity of biofilms formed by nonmucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. J Clin Microbiol 43, 5247–5255.[CrossRef]
    [Google Scholar]
  30. Lewis, K. ( 2005; ). Persister cells and the riddle of biofilm survival. Biochemistry (Mosc) 70, 267–274.[CrossRef]
    [Google Scholar]
  31. Lyczak, J. B., Cannon, C. L. & Pier, G. B. ( 2002; ). Lung infections associated with cystic fibrosis. Clin Microbiol Rev 15, 194–222.[CrossRef]
    [Google Scholar]
  32. Maciá, M. D., Borrell, N., Perez, J. L. & Oliver, A. ( 2004; ). Detection and susceptibility testing of hypermutable Pseudomonas aeruginosa strains with the Etest and disk diffusion. Antimicrob Agents Chemother 48, 2665–2672.[CrossRef]
    [Google Scholar]
  33. Maciá, M. D., Blanquer, D., Togores, B., Sauleda, J., Perez, J. L. & Oliver, A. ( 2005; ). Hypermutation is a key factor in development of multiple-antimicrobial resistance in Pseudomonas aeruginosa strains causing chronic lung infections. Antimicrob Agents Chemother 49, 3382–3386.[CrossRef]
    [Google Scholar]
  34. Mahenthiralingam, E., Campbell, M. E. & Speert, D. P. ( 1994; ). Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect Immun 62, 596–605.
    [Google Scholar]
  35. Mahenthiralingam, E., Campbell, M. E., Foster, J., Lam, J. S. & Speert, D. P. ( 1996; ). Random amplified polymorphic DNA typing of Pseudomonas aeruginosa isolates recovered from patients with cystic fibrosis. J Clin Microbiol 34, 1129–1135.
    [Google Scholar]
  36. Mai-Prochnow, A., Evans, F., Dalisay-Saludes, D., Stelzer, S., Egan, S., James, S., Webb, J. S. & Kjelleberg, S. ( 2004; ). Biofilm development and cell death in the marine bacterium Pseudoalteromonas tunicata. Appl Environ Microbiol 70, 3232–3238.[CrossRef]
    [Google Scholar]
  37. Mai-Prochnow, A., Webb, J. S., Ferrari, B. C. & Kjelleberg, S. ( 2006; ). Ecological advantages of autolysis during the development and dispersal of Pseudoalteromonas tunicata biofilms. Appl Environ Microbiol 72, 5414–5420.[CrossRef]
    [Google Scholar]
  38. Middleton, B., Rodgers, H. C., Camara, M., Knox, A. J., Williams, P. & Hardman, A. ( 2002; ). Direct detection of N-acylhomoserine lactones in cystic fibrosis sputum. FEMS Microbiol Lett 207, 1–7.[CrossRef]
    [Google Scholar]
  39. Moller, S., Sternberg, C., Andersen, J. B., Christensen, B. B., Ramos, J. L., Givskov, M. & Molin, S. ( 1998; ). In situ gene expression in mixed-culture biofilms: evidence of metabolic interactions between community members. Appl Environ Microbiol 64, 721–732.
    [Google Scholar]
  40. Montanari, S., Oliver, A., Salerno, P., Mena, A., Bertoni, G., Tümmler, B., Cariani, L., Conese, M., Döring, G. & other authors ( 2007; ). Biological cost of hypermutation in Pseudomonas aeruginosa strains from patients with cystic fibrosis. Microbiology 153, 1445–1454.[CrossRef]
    [Google Scholar]
  41. Mooij, M. J., Drenkard, E., Llamas, M. A., Vandenbroucke-Grauls, C. M., Savelkoul, P. H., Ausubel, F. M. & Bitter, W. ( 2007; ). Characterization of the integrated filamentous phage Pf5 and its involvement in small-colony formation. Microbiology 153, 1790–1798.[CrossRef]
    [Google Scholar]
  42. Moyano, A. J., Luján, A. M., Argarana, C. E. & Smania, A. M. ( 2007; ). MutS deficiency and activity of the error-prone DNA polymerase IV are crucial for determining mucA as the main target for mucoid conversion in Pseudomonas aeruginosa. Mol Microbiol 64, 547–559.[CrossRef]
    [Google Scholar]
  43. Nguyen, D. & Singh, P. K. ( 2006; ). Evolving stealth: genetic adaptation of Pseudomonas aeruginosa during cystic fibrosis infections. Proc Natl Acad Sci U S A 103, 8305–8306.[CrossRef]
    [Google Scholar]
  44. O'May, C. Y., Reid, D. W. & Kirov, S. M. ( 2006; ). Anaerobic culture conditions favor biofilm-like phenotypes in Pseudomonas aeruginosa isolates from patients with cystic fibrosis. FEMS Immunol Med Microbiol 48, 373–380.[CrossRef]
    [Google Scholar]
  45. Oliver, A., Canton, R., Campo, P., Baquero, F. & Blazquez, J. ( 2000; ). High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288, 1251–1254.[CrossRef]
    [Google Scholar]
  46. Oliver, A., Levin, B. R., Juan, C., Baquero, F. & Blázquez, J. ( 2004; ). Hypermutation and the preexistence of antibiotic-resistant Pseudomonas aeruginosa mutants: implications for susceptibility testing and treatment of chronic infections. Antimicrob Agents Chemother 48, 4226–4233.[CrossRef]
    [Google Scholar]
  47. Purevdorj-Gage, B., Costerton, W. J. & Stoodley, P. ( 2005; ). Phenotypic differentiation and seeding dispersal in non-mucoid and mucoid Pseudomonas aeruginosa biofilms. Microbiology 151, 1569–1576.[CrossRef]
    [Google Scholar]
  48. Saiman, L. & Siegel, J. ( 2004; ). Infection control in cystic fibrosis. Clin Microbiol Rev 17, 57–71.[CrossRef]
    [Google Scholar]
  49. Sanders, L. H., Rockel, A., Lu, H., Wozniak, D. J. & Sutton, M. D. ( 2006; ). Role of Pseudomonas aeruginosa dinB-encoded DNA polymerase IV in mutagenesis. J Bacteriol 188, 8573–8585.[CrossRef]
    [Google Scholar]
  50. Shrout, J. D., Chopp, D. L., Just, C. L., Hentzer, M., Givskov, M. & Parsek, M. R. ( 2006; ). The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol 62, 1264–1277.[CrossRef]
    [Google Scholar]
  51. Smania, A. M., Segura, I., Pezza, R. J., Becerra, C., Albesa, I. & Argarana, C. E. ( 2004; ). Emergence of phenotypic variants upon mismatch repair disruption in Pseudomonas aeruginosa. Microbiology 150, 1327–1338.[CrossRef]
    [Google Scholar]
  52. Smith, E. E., Buckley, D. G., Wu, Z., Saenphimmachak, C., Hoffman, L. R., D'Argenio, D. A., Miller, S. I., Ramsey, B. W., Speert, D. P. & other authors ( 2006; ). Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A 103, 8487–8492.[CrossRef]
    [Google Scholar]
  53. Stewart, P. S. & Costerton, J. W. ( 2001; ). Antibiotic resistance of bacteria in biofilms. Lancet 358, 135–138.[CrossRef]
    [Google Scholar]
  54. Stoodley, P., Sauer, K., Davies, D. G. & Costerton, J. W. ( 2002; ). Biofilms as complex differentiated communities. Annu Rev Microbiol 56, 187–209.[CrossRef]
    [Google Scholar]
  55. Tan, C., Rice, S. A., Webb, J. S. & Kjelleberg, S. ( 2007; ). The involvement of Pf4 filamentous phage in Pseudomonas aeruginosa biofilm development. In Biofilms 2007 (Proceedings of the 4th ASM Conference on Biofilms, 25–29 March 2007, Quebec, Canada), abstract A49, p. 65. Washington, DC: American Society for Microbiology.
  56. VanDevanter, D. R. & Van Dalfsen, J. M. ( 2005; ). How much do Pseudomonas biofilms contribute to symptoms of pulmonary exacerbation in cystic fibrosis? Pediatr Pulmonol 39, 504–506.[CrossRef]
    [Google Scholar]
  57. Webb, J. S., Thompson, L. S., James, S., Charlton, T., Tolker-Nielsen, T., Koch, B., Givskov, M. & Kjelleberg, S. ( 2003; ). Cell death in Pseudomonas aeruginosa biofilm development. J Bacteriol 185, 4585–4592.[CrossRef]
    [Google Scholar]
  58. Webb, J. S., Lau, M. & Kjelleberg, S. ( 2004; ). Bacteriophage and phenotypic variation in Pseudomonas aeruginosa biofilm development. J Bacteriol 186, 8066–8073.[CrossRef]
    [Google Scholar]
  59. Wilschanski, M., Zielenski, J., Markiewicz, D., Tsui, L. C., Corey, M., Levison, H. & Durie, P. R. ( 1995; ). Correlation of sweat chloride concentration with classes of the cystic fibrosis transmembrane conductance regulator gene mutations. J Pediatr 127, 705–710.[CrossRef]
    [Google Scholar]
  60. Worlitzsch, D., Tarran, R., Ulrich, M., Schwab, U., Cekici, A., Meyer, K. C., Birrer, P., Bellon, G., Berger, J. & other authors ( 2002; ). Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 109, 317–325.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/009092-0
Loading
/content/journal/micro/10.1099/mic.0.2007/009092-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error