1887

Abstract

is considered an emergent pathogen in aquaculture and it is also associated with mastitis in domestic animals as well as human endocarditis and septicaemia. In spite of this, the pathogenic mechanisms of this bacterium are poorly understood. Signature-tagged mutagenesis was used to identify virulence factors and to establish the basis of pathogen–host interactions. A library of 1250 UNIUD074-tagged Tn mutants in 25 pools was screened for the ability to grow in fish. Among them, 29 mutants (approx. 2.4 %) were identified which could not be recovered from rainbow trout following infection. Sequence analysis of the tagged Tn-interrupted genes in these mutants indicated the participation in pathogenesis of the transcriptional regulatory proteins homologous to GidA and MerR; the metabolic enzymes asparagine synthetase A and -acetolactate synthase; the ABC transport system of glutamine and a calcium-transporting ATPase; the locus involved in alanylation of teichoic acids; and hypothetical proteins containing EAL and Eis domains, among others. Competence index experiments in several of the selected mutants confirmed the relevance of the Tn-interrupted genes in the development of the infection process. The results suggested some of the metabolic routes and enzymic systems necessary for the complete virulence of this bacterium. This work is believed to represent the first report of a genome-wide scan for virulence factors in . The identified genes will further our understanding of the pathogenesis of infections and may provide targets for intervention or lead to the development of novel therapies.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/007609-0
2007-10-01
2020-08-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/10/3286.html?itemId=/content/journal/micro/10.1099/mic.0.2007/007609-0&mimeType=html&fmt=ahah

References

  1. Abachin E., Poyart C., Pellegrini E., Milohanic E., Fiedler F., Berche P., Trieu-Cuot P.. 2002; Formation of d-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes . Mol Microbiol43:1–4
    [Google Scholar]
  2. Aguirre M., Collins M. D.. 1993; Lactic acid bacteria and human clinical infection. J Appl Bacteriol75:95–107
    [Google Scholar]
  3. Amabile-Cuevas C. F., Demple B.. 1991; Molecular characterization of the soxRS genes of Escherichia coli : two genes control a superoxide stress regulon. Nucleic Acids Res19:4479–4484
    [Google Scholar]
  4. Barnes A. C., Ellis E. A.. 2004; Role of capsule in serotypic differences and complement fixation by Lactococcus garvieae . Fish Shellfish Immunol16:207–214
    [Google Scholar]
  5. Barnes A. C., Guyot C., Hanse B. G., Mackenzie K., Horn M. T., Ellis A. E.. 2002a; Resistance to serum killing may contribute to differences in the abilities of capsulate and non-capsulated isolates of Lactococcus garvieae to cause disease in rainbow trout ( Oncorrhynchus mykiss L). Fish Shellfish Immunol12:155–168
    [Google Scholar]
  6. Barnes A. C., Guyot C., Hanse B. G., Mackenzie K., Horn M. T., Ellis A. E.. 2002b; Antibody increases phagocytosis and killing of Lactococcus garvieae by rainbow trout ( Onchorhynchus mykiss L.) macrophages. Fish Shellfish Immunol12:181–186
    [Google Scholar]
  7. Birnboim H. C., Doly J.. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res7:1513–1523
    [Google Scholar]
  8. Brown P. K., Dozois C. M., Nickerson C. A., Zuppardo A., Terlonge J., Curtiss R.. 2001; mlrA a novel regulator of curli (AgF) and extracellular matrix synthesis by Escherichia coli and Salmonella enterica serovar Typhimurium. Mol Microbiol41:349–363
    [Google Scholar]
  9. Camacho L. R., Ensergueix D., Perez E., Gicquel B., Guilhot C.. 1999; Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol34:257–267
    [Google Scholar]
  10. Chalker A. F., Lupas A., Ingrahem K., So C. Y., Lunsford R. D., Li T., Bryant A., Holmes D. J., Merra A.. other authors 2000; Genetic characterization of gram-positive homologs of the XerCD site-specific recombinases. J Mol Microbiol Biotechnol2:225–233
    [Google Scholar]
  11. Coulter S. N., Schwan W. R., Ng E. Y. W., Langhorne M. H., Ritchie H. D., Westbrock-Wadman S., Hufnagle W. O., Folger K. R., Bayer A. S., Stover C. K.. 1998; Staphyloccus aureus genetic loci impacting growth and survival in multiple infection environments. Mol Microbiol30:393–404
    [Google Scholar]
  12. D'Argenio D. A., Miller S. I.. 2004; Cyclic di-GMP as a messenger bacterial second. Microbiology150:2497–2502
    [Google Scholar]
  13. Eichenbaum Z., Scott J. R.. 1997; Use of Tn 917 to generate insertion mutations in the group A streptococcus. Gene186:213–217
    [Google Scholar]
  14. Eldar A., Goria M., Ghittino C., Zlotkin A., Bercovier H.. 1999a; Biodiversity of Lactococcus garvieae strains isolated from fish in Europe, Asia, and Australia. Appl Environ Microbiol65:1005–1008
    [Google Scholar]
  15. Eldar A., Hurvitz H., Bercovier H., Ghittino C.. 1999b; Lactococcus garvieae and Streptococcus iniae infections in rainbow trout ( Oncorhynchus mykiss ): two similar but different diseases. Dis Aquat Organ36:227–231
    [Google Scholar]
  16. Elliott J. A., Collins M. D., Pigott N. E., Facklam R. R.. 1991; Differentiation of Lactococcus lactis and Lactococcus garvieae from humans by comparison of whole-cell protein patterns. J Clin Microbiol29:2731–2734
    [Google Scholar]
  17. Endo H., Nakayama J., Ushio H., Hayashi T., Watanabe E.. 1998; Application of flow cytometry for rapid detection of Lactococcus garvieae . Appl Biochem Biotechnol75:295–306
    [Google Scholar]
  18. Eyngor M., Zlotkin A., Ghittino C., Prearo M., Douet D.-G., Chilmonczyk S., Eldar A.. 2004; Clonality and diversity of the fish pathogen Lactococcus garvieae in Mediterranean countries. Appl Environ Microbiol70:5132–5137
    [Google Scholar]
  19. Fefer J. J., Ratza K. R., Sharp S. E., Sainz E.. 1998; Lactococcus garvieae endocarditis: report of a case and review of the literature. Diagn Microbiol Infect Dis32:127–130
    [Google Scholar]
  20. Fihman V., Raskine L., Barrou Z., Kiffel C., Riahi J., Bercot B., Sanson-Le Pors M. J.. 2006; Lactococcus garvieae endocarditis: identification by 16S rRNA and sodA sequence analysis. J Infect52:e3–e6
    [Google Scholar]
  21. Goh S. H., Facklam R. R., Chang M., Hill J. E., Tyrrell G. J., Burns E. C., Chan D., He C., Rahim T.. other authors 2000; Identification of Enterococcus species and phenotypically similar Lactococcus and Vagococcus species by reverse checkerboard hybridization to chaperonin 60 gene sequences. J Clin Microbiol38:3953–3959
    [Google Scholar]
  22. Gutierrez J. A., Crowley P. J., Brown D. P., Hillman J. D., Youngman P., Bleiweis A. S.. 1996; Insertional mutagenesis and recovery of interrupted genes of Streptococcus mutans by using transposon Tn 917 : preliminary characterization of mutants displaying acid sensitivity and nutritional requirements. J Bacteriol178:4166–4175
    [Google Scholar]
  23. Hensel M., Shea J. E., Gleeson C., Jones M. D., Dalton E., Holden D. W.. 1995; Simultaneous identification of bacterial virulence genes by negative selection. Science269:400–403
    [Google Scholar]
  24. Hisert K. B., MacCoss M., Shiloh M. U., Darwin K. H., Singh S., Jones R. A., Ehrt S., Zhang Z., Gaffney B. L.. other authors 2005; A glutamate-alanine-leucine (EAL) domain protein of Salmonella controls bacterial survival in mice, antioxidant defence and killing of macrophages role of cyclic diGMP. Mol Microbiol56:1234–1245
    [Google Scholar]
  25. James P. R., Hardman S. M., Patterson D. L.. 2000; Osteomyelitis and possible endocarditis secondary to Lactococcus garvieae : a first case report. Postgrad Med J76:301–303
    [Google Scholar]
  26. Johansen L., Bryn K., Stormer F. C.. 1975; Physical and biochemical role of the butanediol pathway in Aerobacter ( Enterobacter ) aerogenes . J Bacteriol123:1124–1130
    [Google Scholar]
  27. Jones A. L., Knoll K. M., Rubens C. E.. 2000; Identification of Streptococcus agalactiae virulence genes in the neonatal rat sepsis model using signature-tagged mutagenesis. Mol Microbiol37:1444–1455
    [Google Scholar]
  28. Kawanishi M., Yoshida T., Yagashino S., Kijima M., Yagyu K., Nakai T., Murakami M., Morita H., Suzuki S.. 2006; Differences between Lactococcus garvieae isolated from the genus Seriola in Japan and those isolated from others animals (trout, terrestrial animals from Europe) with regard to pathogenicity, phage susceptibility and genetic characterization. J Appl Microbiol101:496–504
    [Google Scholar]
  29. Kim J. S., Kim M. H., Joe M. H., Say S. S., Lee I. S., Choi S. Y.. 2002; The sctR of Salmonella enterica serovar Typhimurium encoding a homologue of MerR protein is involved in the copper-responsive regulation of cuiD . FEMS Microbiol Lett210:99–103
    [Google Scholar]
  30. Kinscherf T. G., Willis D. K.. 2002; Global regulation by GidA in Pseudomonas syringae . J Bacteriol184:2281–2286
    [Google Scholar]
  31. Kovács M., Halfmann A., Fedtke I., Heintz M., Peschel A., Vollmer W., Hakenbeck R., Brückner R.. 2006; A functional dlt operon, encoding proteins required for incorporation of d-alanine in teichoic acids in gram-positive bacteria, confers resistance to cationic antimicrobial peptides in Streptococcus pneumoniae . J Bacteriol188:5797–5805
    [Google Scholar]
  32. Kusuda R., Kawai K.. 1998; Bacterial diseases of cultured marine fish in Japan. Fish Pathol33:221–227
    [Google Scholar]
  33. Leenhouts K. J., Kok J., Venema G.. 1989; Campbell-like integration of heterologous plasmid DNA into the chromosome of Lactococcus lactis subsp. lactis . Appl Environ Microbiol55:394–400
    [Google Scholar]
  34. Mei J. M., Nourbakhsh F., Ford C. W., Holden D. W.. 1997; Identification of Staphylococcus aureus virulence genes in a murine model of bacteraemia using signature-tagged mutagenesis. Mol Microbiol26:399–407
    [Google Scholar]
  35. Menendez A., Mayo B., Guijarro J. A.. 2006; Construction of transposition insertion libraries and specific gene inactivation in the pathogen Lactococcus garvieae . Res Microbiol157:575–581
    [Google Scholar]
  36. Mofredj A., Baraka D., Kloeti G., Dumont J. L.. 2000; Lactococcus garvieae septicaemia with liver abscess in an immunosuppressed patient. Am J Med109:513–514
    [Google Scholar]
  37. Ooyama T., Kera A., Okada T., Inglis V., Yoshida T.. 1999; The protective immune response of yellowtail Seriola quinqueradiata to the bacterial fish pathogen Lactococcus garvieae . Dis Aquat Organ37:121–126
    [Google Scholar]
  38. Polissi A., Pontiggia A., Feger G., Altieri M., Mottl H., Ferrari L., Simon D.. 1998; Large-scale identification of virulence genes from Streptococcus pneumoniae . Infect Immun66:5620–5629
    [Google Scholar]
  39. Ravelo C., Magariños B., Lopez-Romalde J., Toranzo A. E., Romalde J. L.. 2003; Molecular fingerprinting of fish-pathogenic Lactococcus garvieae strains by random amplified polymorphic DNA analysis. J Clin Microbiol41:751–756
    [Google Scholar]
  40. Ravelo C., Magariños B., Herrero M. C., Costa L., Toranzo A. E., Romalde J. L.. 2005; Use of adjuvanted vaccines to lengthen the protection against lactococcosis in rainbow trout ( Oncorhynchus mykiss . Aquaculture251:153–158
    [Google Scholar]
  41. Römling U., Amikam D.. 2006; Cyclic di-GMP as a second messenger. Curr Opin Microbiol9:218–228
    [Google Scholar]
  42. Ruley K. M., Ansede J. H., Pritchett C. L., Talaat A. M., Reimschuessel R., Trucksis M.. 2004; Identification of Mycobacterium marinum virulence genes using signature-tagged mutagenesis and the goldfish model of mycobacterial pathogenesis. FEMS Microbiol Lett232:75–81
    [Google Scholar]
  43. Saenz H. L., Dehio C.. 2005; Signature-tagged mutagenesis: technical advances in a negative selection method for virulence gene identification. Curr Opin Microbiol8:612–619
    [Google Scholar]
  44. Sambrook J., Russell D.. 2001; Molecular Cloning : a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  45. Schmidtke L. M., Carson J.. 2003; Antigen recognition by rainbow trout ( Oncorhynchus mykiss ) of whole cell proteins expressed by Lactococcus garvieae when obtained directly from fish and under iron limited culture conditions. Vet Microbiol93:63–71
    [Google Scholar]
  46. Sha J., Kozlova E. V., Fadl A. A., Olano J. P., Houston C. W., Peterson J. W., Chopra A. K.. 2004; Molecular characterization of a glucose-inhibited division gene, gidA, that regulates cytotoxic enterotoxin of Aeromonas hydrophila . Infect Immun72:1084–1095
    [Google Scholar]
  47. Shin G. W., Palaksha K. J., Kim Y. R., Nho S. W., Cho J. H., Heo N. E., Heo G. J., Park S. C., Jung T. S.. 2007; Immunoproteomic analysis of capsulate and non-capsulate strains of Lactococcus garvieae . Vet Microbiol119:205–212
    [Google Scholar]
  48. Slater J. D., Allen A. G., May J. P., Bolitho S., Lindsay H., Maskell D. J.. 2003; Mutagenesis of Streptococcus equi and Streptococcus suis by transposon Tn 917 . Vet Microbiol93:197–206
    [Google Scholar]
  49. Smeets L. C., Backer S. C., Barcak G. J., Vandenbroucke-Grauls C. M., Bitter W., Goosen N.. 2006; Functional characterization of the competence protein DprA/SMF in E. coli . FEMS Microbiol Lett263:223–228
    [Google Scholar]
  50. Tamura G. S., Nittayajarn A., Schoentag D. L.. 2002; A glutamine transport gene, glnQ , is required for fibronectin adherence and virulence of group B streptococci. Infect Immun70:2877–2885
    [Google Scholar]
  51. Teixeira L. M., Merquior V. L., Vianni M. C., Carvalho M. G., Fracalanzza S. E., Steigerwalt A. G., Brenner D. J., Facklam R. R.. 1996; Phenotypic and genotypic characterization of atypical Lactococcus garvieae strains isolated from water buffalos with subclinical mastitis and confirmation of L. garvieae as a senior subjective synonym of Enterococcus seriolicida . Int J Syst Bacteriol46:664–668
    [Google Scholar]
  52. Vela A. I., Vazquez J., Gibello A., Blanco M. M., Moreno M. A., Liébana P., Albendea C., Alcala B., Mendez A.. other authors 2000; Phenotypic and genetic characterization of Lactococcus garvieae isolated in Spain from lactococcosis outbreaks and comparison with isolates of other countries and sources. J Clin Microbiol38:3791–3795
    [Google Scholar]
  53. Vendrell D., Balcazar J. L., Ruiz-Zarzuela I., de Blas I., Girones O., Muzquiz J. L.. 2006; Lactococcus garvieae in fish: a review. Comp Immunol Microbiol Infect Dis29:177–198
    [Google Scholar]
  54. Vinh D. C., Nichol K. A., Raud F., Embil J. M.. 2006; Native-valve bacterial endocarditis caused by Lactococcus garvieae . Diagn Microbiol Infect Dis56:91–94
    [Google Scholar]
  55. Wang L., Beer S. V.. 2006; Application of signature tagged mutagenesis to the study of virulence of Erwinia amylovora . FEMS Microbiol Lett265:164–171
    [Google Scholar]
  56. Wang C. Y., Shie H. S., Chen S. C., Huang J. P., Hsieh I. C., Wen M. S., Lin F. C., Wu D.. 2006; Lactococcus garvieae infections in humans: possible association with aquaculture outbreaks. Int J Clin Pract61:68–73
    [Google Scholar]
  57. Wartha F., Beiter K., Albiger B., Fernebro J., Zychlinsky A., Normark S., Henriques-Normark B.. 2007; Capsule and d-alanylated lipotheicoic acids protect Streptococcus pneumoniae against neutrophil extracellular traps. Cell Microbiol9:1162–1171
    [Google Scholar]
  58. Wei J., Dahl J. L., Moulder J. W., Roberts E. A., O'Gaora P., Young D. B., Friedman R. L.. 2000; Identification of a Mycobacterium tuberculosis gene that enhances mycobacterial survival in macrophages. J Bacteriol182:377–384
    [Google Scholar]
  59. Weidenmaier C., Peschel A., Kempf A., Lucindo N., Yeamen M. R., Bayer A. S.. 2005; DltABCD-and MprF-mediated cell envelope modifications of Staphylococcus aureus confer resistance to platelet microbicidal proteins and contribute to virulence in a rabbit endocarditis model. Infect Immun73:8033–8038
    [Google Scholar]
  60. Wilson T., Carson J.. 2003; Development of sensitive, high-throughput one tube RT-PCR enzyme hybridization assay to detect selected bacterial fish pathogens. Dis Aquat Organ54:127–134
    [Google Scholar]
  61. Wilson T., Carson J., Bowman J.. 2002; Optimization of one-tube PCR-ELISA to detect femtogram amounts of genomic DNA. J Microbiol Methods51:163–170
    [Google Scholar]
  62. Yiu K. H., Siu C. W., To K. K., Jim M. H., Lee K. L., Lau C. P., Tse H. F.. 2007; A rare cause of infective endocarditis; Lactococcus garvieae . Int J Cardiol114:286–287
    [Google Scholar]
  63. Yoon S. S., Mekalanos J. J.. 2006; Butanediol synthesis and the emergence of the Vibrio cholerae El Tor biotype. Infect Immun74:6547–6556
    [Google Scholar]
  64. Yoshida T., Endo M., Sakai M., Inglis V.. 1997; A cell capsule with possible involvement in resistance to opsophagocytosis in Enterococcus serolicida isolated from yellowtail Seriola quinqueradiata . Dis Aquat Organ29:233–235
    [Google Scholar]
  65. Zlotkin A., Eldar A., Ghittino C., Bercovier H.. 1998; Identification of Lactococcus garvieae by PCR. J Clin Microbiol36:983–985
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/007609-0
Loading
/content/journal/micro/10.1099/mic.0.2007/007609-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error