1887

Abstract

A previously unannotated, putative gene was identified in the genome based on sequence analysis; deletion mutants in this gene had a ‘polyhook’ phenotype characteristic of mutants in other genera. The mutants greatly overexpressed the -dependent flagellar hook protein FlgE, to form unusual filamentous structures resembling straight flagella in addition to polyhooks. The genome sequence reveals only one gene predicted to encode an orthologue of the NtrC-family activator required for -dependent transcription. Hence, all -dependent genes in the genome would be overexpressed in the mutant together with . Microarray analysis of genome-wide transcription in the mutant showed increased transcription of a subset of genes, often downstream of -dependent promoters identified by a quality-predictive algorithm applied to the whole genome. Assessment of genome-wide transcription in deletion mutants in encoding , and in the -activator gene , showed reciprocally reduced transcription of genes that were overexpressed in the mutant. The ( )-dependent regulon was also analysed. Together the data clearly define the roles of the alternative sigma factors RpoN and FliA in flagellar biogenesis in , and identify additional putative members of their respective regulons.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/007401-0
2007-09-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/9/3099.html?itemId=/content/journal/micro/10.1099/mic.0.2007/007401-0&mimeType=html&fmt=ahah

References

  1. Barrios, H., Valderrama, B. & Morett, E. ( 1999; ). Compilation and analysis of σ 54-dependent promoter sequences. Nucleic Acids Res 27, 4305–4313.[CrossRef]
    [Google Scholar]
  2. Benjamini, Y. & Hochberg, Y. ( 1995; ). Controlling the false discovery rate – a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57, 289–300.
    [Google Scholar]
  3. Brazma, A., Robinson, A., Cameron, G. & Ashburner, M. ( 2000; ). One-stop shop for microarray data. Nature 403, 699–700.[CrossRef]
    [Google Scholar]
  4. Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C., Aach, J., Ansorge, W., Ball, C. A. & other authors ( 2001; ). Minimum information about a microarray experiment (MIAME) – toward standards for microarray data. Nat Genet 29, 365–371.[CrossRef]
    [Google Scholar]
  5. Buck, M., Gallegos, M. T., Studholme, D. J., Guo, Y. & Gralla, J. D. ( 2000; ). The bacterial enhancer-dependent σ 54 (σ N) transcription factor. J Bacteriol 182, 4129–4136.[CrossRef]
    [Google Scholar]
  6. Carrillo, C. D., Taboada, E., Nash, J. H., Lanthier, P., Kelly, J., Lau, P. C., Verhulp, R., Mykytczuk, O., Sy, J. & other authors ( 2004; ). Genome-wide expression analyses of Campylobacter jejuni NCTC11168 reveals coordinate regulation of motility and virulence by flhA. J Biol Chem 279, 20327–20338.[CrossRef]
    [Google Scholar]
  7. Chilcott, G. S. & Hughes, K. T. ( 2000; ). Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar Typhimurium and Escherichia coli. Microbiol Mol Biol Rev 64, 694–708.[CrossRef]
    [Google Scholar]
  8. Dasgupta, N., Wolfgang, M. C., Goodman, A. L., Arora, S. K., Jyot, J., Lory, S. & Ramphal, R. ( 2003; ). A four-tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginosa. Mol Microbiol 50, 809–824.[CrossRef]
    [Google Scholar]
  9. Ferris, H. U. & Minamino, T. ( 2006; ). Flipping the switch: bringing order to flagellar assembly. Trends Microbiol 14, 519–526.[CrossRef]
    [Google Scholar]
  10. Frech, K., Herrmann, G. & Werner, T. ( 1993; ). Computer-assisted prediction, classification, and delimitation of protein binding sites in nucleic acids. Nucleic Acids Res 21, 1655–1664.[CrossRef]
    [Google Scholar]
  11. Gaynor, E. C., Wells, D. H., MacKichan, J. K. & Falkow, S. ( 2005; ). The Campylobacter jejuni stringent response controls specific stress survival and virulence-associated phenotypes. Mol Microbiol 56, 8–27.[CrossRef]
    [Google Scholar]
  12. Golden, N. J. & Acheson, D. W. ( 2002; ). Identification of motility and autoagglutination Campylobacter jejuni mutants by random transposon mutagenesis. Infect Immun 70, 1761–1771.[CrossRef]
    [Google Scholar]
  13. Goon, S., Kelly, J. F., Logan, S. M., Ewing, C. P. & Guerry, P. ( 2003; ). Pseudaminic acid, the major modification on Campylobacter flagellin, is synthesized via the Cj1293 gene. Mol Microbiol 50, 659–671.[CrossRef]
    [Google Scholar]
  14. Goon, S., Ewing, C. P., Lorenzo, M., Pattarini, D., Majam, G. & Guerry, P. ( 2006; ). A σ 28-regulated nonflagella gene contributes to virulence of Campylobacter jejuni 81–176. Infect Immun 74, 769–772.[CrossRef]
    [Google Scholar]
  15. Guerry, P., Alm, R. A., Power, M. E., Logan, S. M. & Trust, T. J. ( 1991; ). Role of two flagellin genes in Campylobacter motility. J Bacteriol 173, 4757–4764.
    [Google Scholar]
  16. Guerry, P., Alm, R. A., Szymanski, C. M. & Trust, T. J. ( 2000; ). Structure, function and antigenicity of Campylobacter flagella. In Campylobacter, pp. 405–421. Edited by I. Nachamkin & M. J. Blaser. Washington, DC: American Society for Microbiology.
  17. Guerry, P., Ewing, C. P., Schirm, M., Lorenzo, M., Kelly, J., Pattarini, D., Majam, G., Thibault, P. & Logan, S. ( 2006; ). Changes in flagellin glycosylation affect Campylobacter autoagglutination and virulence. Mol Microbiol 60, 299–311.[CrossRef]
    [Google Scholar]
  18. Hendrixson, D. R. & DiRita, V. J. ( 2003; ). Transcription of σ 54-dependent but not σ 28-dependent flagellar genes in Campylobacter jejuni is associated with formation of the flagellar secretory apparatus. Mol Microbiol 50, 687–702.[CrossRef]
    [Google Scholar]
  19. Hinds, J., Laing, K. G., Mangan, J. A. & Wren, B. W. ( 2002a; ). Glass slide microarrays for bacterial genomes. In Methods in Microbiology: Functional Microbial Genomics, pp. 83–99. Edited by B. W. Wren & N. Dorrell. London: Academic Press.
  20. Hinds, J., Witney, A. A. & Vass, J. K. ( 2002b; ). Microarray design for bacterial genomes. In Methods in Microbiology: Functional Microbial Genomics, pp. 67–82. Edited by B. W. Wren & N. Dorrell. London: Academic Press.
  21. Hirano, T., Yamaguchi, S., Oosawa, K. & Aizawa, S. ( 1994; ). Roles of FliK and FlhB in determination of flagellar hook length in Salmonella typhimurium. J Bacteriol 176, 5439–5449.
    [Google Scholar]
  22. Hirano, T., Minamino, T. & Macnab, R. M. ( 2001; ). The role in flagellar rod assembly of the N-terminal domain of Salmonella FlgJ, a flagellum-specific muramidase. J Mol Biol 312, 359–369.[CrossRef]
    [Google Scholar]
  23. Hirano, T., Shibata, S., Ohnishi, K., Tani, T. & Aizawa, S. ( 2005; ). N-terminal signal region of FliK is dispensable for length control of the flagellar hook. Mol Microbiol 56, 346–360.[CrossRef]
    [Google Scholar]
  24. Ide, N., Ikebe, T. & Kutsukake, K. ( 1999; ). Reevaluation of the promoter structure of the class 3 flagellar operons of Escherichia coli and Salmonella. Genes Genet Syst 74, 113–116.[CrossRef]
    [Google Scholar]
  25. Jagannathan, A. & Penn, C. W. ( 2005; ). Motility. In Campylobacter: Molecular and Cellular Biology, pp. 331–347 Edited by J. M. Ketley. Norwich: Horizon Bioscience.
  26. Jagannathan, A., Constantinidou, C. & Penn, C. W. ( 2001; ). Roles of rpoN, fliA, and flgR in expression of flagella in Campylobacter jejuni. J Bacteriol 183, 2937–2942.[CrossRef]
    [Google Scholar]
  27. Jyot, J., Dasgupta, N. & Ramphal, R. ( 2002; ). FleQ, the major flagellar gene regulator in Pseudomonas aeruginosa, binds to enhancer sites located either upstream or atypically downstream of the RpoN binding site. J Bacteriol 184, 5251–5260.[CrossRef]
    [Google Scholar]
  28. Karlyshev, A. V., McCrossan, M. V. & Wren, B. W. ( 2001; ). Demonstration of polysaccharide capsule in Campylobacter jejuni using electron microscopy. Infect Immun 69, 5921–5924.[CrossRef]
    [Google Scholar]
  29. Keener, J. P. ( 2005; ). A model for length control of flagellar hooks of Salmonella typhimurium. J Theor Biol 234, 263–275.[CrossRef]
    [Google Scholar]
  30. Kim, Y. K. & McCarter, L. L. ( 2000; ). Analysis of the polar flagellar gene system of Vibrio parahaemolyticus. J Bacteriol 182, 3693–3704.[CrossRef]
    [Google Scholar]
  31. Kinsella, N., Guerry, P., Cooney, J. & Trust, T. J. ( 1997; ). The flgE gene of Campylobacter coli is under the control of the alternative sigma factor σ 54. J Bacteriol 179, 4647–4653.
    [Google Scholar]
  32. Konkel, M. E., Monteville, M. R., Rivera-Amill, V. & Joens, L. A. ( 2001; ). The pathogenesis of Campylobacter jejuni-mediated enteritis. Curr Issues Intest Microbiol 2, 55–71.
    [Google Scholar]
  33. Konkel, M. E., Klena, J. D., Rivera-Amill, V., Monteville, M. R., Biswas, D., Raphael, B. & Mickelson, J. ( 2004; ). Secretion of virulence proteins from Campylobacter jejuni is dependent on a functional flagellar export apparatus. J Bacteriol 186, 3296–3303.[CrossRef]
    [Google Scholar]
  34. Livak, K. J. ( 1997; ). ABI Prism 7700 Sequence Analysis Detection System. User bulletin no. 2, PE Applied Biosystems, AB Website, bulletin reference: 4303859B, 777802–002. http://docs.appliedbiosystems.com/pediodocs/04303859.pdf.
  35. Livak, K. J. & Schmittgen, T. D. ( 2001; ). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408.[CrossRef]
    [Google Scholar]
  36. Loong Chan, V., Louie, H. & Joe, A. ( 1998; ). Expression of the flgFG operon of Campylobacter jejuni in Escherichia coli yields an extra fusion protein. Gene 225, 131–141.[CrossRef]
    [Google Scholar]
  37. Luneberg, E., Glenn-Calvo, E., Hartmann, M., Bar, W. & Frosch, M. ( 1998; ). The central, surface-exposed region of the flagellar hook protein FlgE of Campylobacter jejuni shows hypervariability among strains. J Bacteriol 180, 3711–3714.
    [Google Scholar]
  38. Macnab, R. M. ( 1996; ). Flagella and motility. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 123–145. Edited by F. C. Neidhardt. Washington, DC: American Society for Microbiology.
  39. Macnab, R. M. ( 2003; ). How bacteria assemble flagella. Annu Rev Microbiol 57, 77–100.[CrossRef]
    [Google Scholar]
  40. Minamino, T. & Macnab, R. M. ( 2000; ). Domain structure of Salmonella FlhB, a flagellar export component responsible for substrate specificity switching. J Bacteriol 182, 4906–4914.[CrossRef]
    [Google Scholar]
  41. Minamino, T. & Pugsley, A. P. ( 2005; ). Measure for measure in the control of type III secretion hook and needle length. Mol Microbiol 56, 303–308.[CrossRef]
    [Google Scholar]
  42. Minamino, T., Gonzalez-Pedrajo, B., Yamaguchi, K., Aizawa, S. I. & Macnab, R. M. ( 1999; ). FliK, the protein responsible for flagellar hook length control in Salmonella, is exported during hook assembly. Mol Microbiol 34, 295–304.[CrossRef]
    [Google Scholar]
  43. Minamino, T., Saijo-Hamano, Y., Furukawa, Y., Gonzalez-Pedrajo, B., Macnab, R. M. & Namba, K. ( 2004; ). Domain organization and function of Salmonella FliK, a flagellar hook-length control protein. J Mol Biol 341, 491–502.[CrossRef]
    [Google Scholar]
  44. Mohr, C. D., MacKichan, J. K. & Shapiro, L. ( 1998; ). A membrane-associated protein, FliX, is required for an early step in Caulobacter flagellar assembly. J Bacteriol 180, 2175–2185.
    [Google Scholar]
  45. Nuijten, P. J., van Asten, F. J., Gaastra, W. & van der Zeijst, B. A. ( 1990; ). Structural and functional analysis of two Campylobacter jejuni flagellin genes. J Biol Chem 265, 17798–17804.
    [Google Scholar]
  46. Obhi, R. K. & Creuzenet, C. ( 2005; ). Biochemical characterization of the Campylobacter jejuni Cj1294, a novel UDP-4-keto-6-deoxy-GlcNAc aminotransferase that generates UDP-4-amino-4,6-dideoxy-GalNAc. J Biol Chem 280, 20902–20908.[CrossRef]
    [Google Scholar]
  47. Pallen, M. J., Penn, C. W. & Chaudhuri, R. R. ( 2005; ). Bacterial flagellar diversity in the post-genomic era. Trends Microbiol 13, 143–149.[CrossRef]
    [Google Scholar]
  48. Park, K., Choi, S., Ko, M. & Park, C. ( 2001; ). Novel σ F-dependent genes of Escherichia coli found using a specified promoter consensus. FEMS Microbiol Lett 202, 243–250.
    [Google Scholar]
  49. Parkhill, J., Wren, B. W., Mungall, K., Ketley, J. M., Churcher, C., Basham, D., Chillingworth, T., Davies, R. M., Feltwell, T. & other authors ( 2000; ). The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403, 665–668.[CrossRef]
    [Google Scholar]
  50. Patterson-Delafield, J., Martinez, R. J., Stocker, B. A. & Yamaguchi, S. ( 1973; ). A new fla gene in Salmonella typhimuriumflaR – and its mutant phenotype-superhooks. Arch Mikrobiol 90, 107–120.[CrossRef]
    [Google Scholar]
  51. Penn, C. W. ( 2001; ). Surface components of Campylobacter and Helicobacter. Symp Ser Soc Appl Microbiol 30, 25S–35S.
    [Google Scholar]
  52. Prouty, M. G., Correa, N. E. & Klose, K. E. ( 2001; ). The novel σ 54- and σ 28-dependent flagellar gene transcription hierarchy of Vibrio cholerae. Mol Microbiol 39, 1595–1609.[CrossRef]
    [Google Scholar]
  53. Ryan, K. A., Karim, N., Worku, M., Penn, C. W. & O'Toole, P. W. ( 2005; ). Helicobacter pylori flagellar hook-filament transition is controlled by a FliK functional homolog encoded by the gene HP0906. J Bacteriol 187, 5742–5750.[CrossRef]
    [Google Scholar]
  54. Silverman, M. R. & Simon, M. I. ( 1972; ). Flagellar assembly mutants in Escherichia coli. J Bacteriol 112, 986–993.
    [Google Scholar]
  55. Song, Y. C., Jin, S., Louie, H., Ng, D., Lau, R., Zhang, Y., Weerasekera, R., Al Rashid, S., Ward, L. A. & other authors ( 2004; ). FlaC, a protein of Campylobacter jejuni TGH9011 (ATCC43431) secreted through the flagellar apparatus, binds epithelial cells and influences cell invasion. Mol Microbiol 53, 541–553.[CrossRef]
    [Google Scholar]
  56. Wassenaar, T. M. ( 1997; ). Toxin production by Campylobacter spp. Clin Microbiol Rev 10, 466–476.
    [Google Scholar]
  57. Wassenaar, T. M., Fry, B. N. & van der Zeijst, B. A. ( 1993a; ). Genetic manipulation of Campylobacter: evaluation of natural transformation and electro-transformation. Gene 132, 131–135.[CrossRef]
    [Google Scholar]
  58. Wassenaar, T. M., van der Zeijst, B. A., Ayling, R. & Newell, D. G. ( 1993b; ). Colonization of chicks by motility mutants of Campylobacter jejuni demonstrates the importance of flagellin A expression. J Gen Microbiol 139, 1171–1175.[CrossRef]
    [Google Scholar]
  59. Wosten, M. M., Boeve, M., Koot, M. G., van Nuene, A. C. & van der Zeijst, B. A. ( 1998; ). Identification of Campylobacter jejuni promoter sequences. J Bacteriol 180, 594–599.
    [Google Scholar]
  60. Wosten, M. M., Wagenaar, J. A. & van Putten, J. P. ( 2004; ). The FlgS/FlgR two-component signal transduction system regulates the fla regulon in Campylobacter jejuni. J Biol Chem 279, 16214–16222.[CrossRef]
    [Google Scholar]
  61. Wren, B. W., Henderson, J. & Ketley, J. M. ( 1994; ). A PCR-based strategy for the rapid construction of defined bacterial deletion mutants. Biotechniques 16, 994–996.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/007401-0
Loading
/content/journal/micro/10.1099/mic.0.2007/007401-0
Loading

Data & Media loading...

Supplements

Supplementary Table S1 [PDF file](124 KB)

PDF

Supplementary Table S2 [PDF file](105 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error