1887

Abstract

Proteasomes play key roles in a variety of eukaryotic cell functions, including translation, transcription, metabolism, DNA repair and cell-cycle control. The biological functions of these multicatalytic proteases in archaea, however, are poorly understood. In this study, was used as a model to determine the influence the proteasome-specific inhibitor -lactacystin--lactone (LL) has on archaeal proteome composition. Addition of 20–30 μM LL had a widespread effect on the proteome, with a 38–42 % increase in the number of 2-D gel electrophoresis (2-DE) protein spots, from an average of 627 to 1036 spots. Protein identities for 17 of the spots that were easily separated by 2-DE and unique and/or increased 2- to 14-fold in the LL-treated cells were determined by tandem mass spectrometry (MS/MS). These included protein homologues of the DJ-1/ThiJ family, mobilization of sulfur system, translation elongation factor EF-1 A, ribosomal proteins, tubulin-like FtsZ, divalent metal ABC transporter, dihydroxyacetone kinase DhaL, aldehyde dehydrogenase and 2-oxoacid decarboxylase E1. Based on these results, inhibition of proteasomes had a global influence on proteome composition, including proteins involved in central functions of the cell.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/005769-0
2007-07-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/7/2271.html?itemId=/content/journal/micro/10.1099/mic.0.2007/005769-0&mimeType=html&fmt=ahah

References

  1. Arora, S., Yang, J. M. & Hait, W. N. ( 2005; ). Identification of the ubiquitin-proteasome pathway in the regulation of the stability of eukaryotic elongation factor-2 kinase. Cancer Res 65, 3806–3810.[CrossRef]
    [Google Scholar]
  2. Asher, G., Reuven, N. & Shaul, Y. ( 2006; ). 20S proteasomes and protein degradation ‘by default’. Bioessays 28, 844–849.[CrossRef]
    [Google Scholar]
  3. Bachler, C., Schneider, P., Bahler, P., Lustig, A. & Erni, B. ( 2005; ). Escherichia coli dihydroxyacetone kinase controls gene expression by binding to transcription factor DhaR. EMBO J 24, 283–293.[CrossRef]
    [Google Scholar]
  4. Bandyopadhyay, S. & Cookson, M. R. ( 2004; ). Evolutionary and functional relationships within the DJ1 superfamily. BMC Evol Biol 4, 6 [CrossRef]
    [Google Scholar]
  5. Baugh, J. M. & Pilipenko, E. V. ( 2004; ). 20S proteasome differentially alters translation of different mRNAs via the cleavage of eIF4F and eIF3. Mol Cell 16, 575–586.[CrossRef]
    [Google Scholar]
  6. Caldas, T., Laalami, S. & Richarme, G. ( 2000; ). Chaperone properties of bacterial elongation factor EF-G and initiation factor IF2. J Biol Chem 275, 855–860.[CrossRef]
    [Google Scholar]
  7. Casal, J. J. & Yanovsky, M. J. ( 2005; ). Regulation of gene expression by light. Int J Dev Biol 49, 501–511.[CrossRef]
    [Google Scholar]
  8. Chuang, S. M., Chen, L., Lambertson, D., Anand, M., Kinzy, T. G. & Madura, K. ( 2005; ). Proteasome-mediated degradation of cotranslationally damaged proteins involves translation elongation factor 1A. Mol Cell Biol 25, 403–413.[CrossRef]
    [Google Scholar]
  9. Claverys, J. P. ( 2001; ). A new family of high-affinity ABC manganese and zinc permeases. Res Microbiol 152, 231–243.[CrossRef]
    [Google Scholar]
  10. Coux, O. ( 2003; ). An interaction map of proteasome subunits. Biochem Soc Trans 31, 465–469.[CrossRef]
    [Google Scholar]
  11. Danson, M. J., Eisenthal, R., Hall, S., Kessell, S. R. & Williams, D. L. ( 1984; ). Dihydrolipoamide dehydrogenase from halophilic archaebacteria. Biochem J 218, 811–818.
    [Google Scholar]
  12. Del Sol, R., Mullins, J. G., Grantcharova, N., Flardh, K. & Dyson, P. ( 2006; ). Influence of CrgA on assembly of the cell division protein FtsZ during development of Streptomyces coelicolor. J Bacteriol 188, 1540–1550.[CrossRef]
    [Google Scholar]
  13. Devoy, A., Soane, T., Welchman, R. & Mayer, R. J. ( 2005; ). The ubiquitin-proteasome system and cancer. Essays Biochem 41, 187–203.[CrossRef]
    [Google Scholar]
  14. Dopson, M., Baker-Austin, C. & Bond, P. L. ( 2005; ). Analysis of differential protein expression during growth states of Ferroplasma strains and insights into electron transport for iron oxidation. Microbiology 151, 4127–4137.[CrossRef]
    [Google Scholar]
  15. Erni, B., Siebold, C., Christen, S., Srinivas, A., Oberholzer, A. & Baumann, U. ( 2006; ). Small substrate, big surprise: fold, function and phylogeny of dihydroxyacetone kinases. Cell Mol Life Sci 63, 890–900.[CrossRef]
    [Google Scholar]
  16. Falb, M., Aivaliotis, M., Garcia-Rizo, C., Bisle, B., Tebbe, A., Klein, C., Konstantinidis, K., Siedler, F., Pfeiffer, F. & Oesterhelt, D. ( 2006; ). Archaeal N-terminal protein maturation commonly involves N-terminal acetylation: a large-scale proteomics survey. J Mol Biol 362, 915–924.[CrossRef]
    [Google Scholar]
  17. Fenteany, G. & Schreiber, S. L. ( 1998; ). Lactacystin, proteasome function, and cell fate. J Biol Chem 273, 8545–8548.[CrossRef]
    [Google Scholar]
  18. Flynn, J. M., Neher, S. B., Kim, Y. I., Sauer, R. T. & Baker, T. A. ( 2003; ). Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol Cell 11, 671–683.[CrossRef]
    [Google Scholar]
  19. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D. & Bairoch, A. ( 2005; ). Protein identification and analysis tools on the ExPASy server. In The Proteomics Protocols Handbook, pp. 571–607. Edited by J. M. Walker. Totawa, NJ: Humana Press.
  20. Giometti, C. S., Reich, C., Tollaksen, S., Babnigg, G., Lim, H., Zhu, W., Yates, J. & Olsen, G. ( 2002; ). Global analysis of a ‘simple’ proteome: Methanococcus jannaschii. J Chromatogr B Analyt Technol Biomed Life Sci 782, 227–243.[CrossRef]
    [Google Scholar]
  21. Gonen, H., Smith, C. E., Siegel, N. R., Kahana, C., Merrick, W. C., Chakraburity, K., Schwartz, A. L. & Ciechanover, A. ( 1994; ). Protein synthesis elongation factor EF-1α is essential for ubiquitin-dependent degradation of certain N α -acetylated proteins and may be substituted for by the bacterial elongation factor EF-Tu. Proc Natl Acad Sci U S A 91, 7648–7652.[CrossRef]
    [Google Scholar]
  22. Gonen, H., Dickman, D., Schwartz, A. L. & Ciechanover, A. ( 1996; ). Protein synthesis elongation factor EF-1α is an isopeptidase essential for ubiquitin-dependent degradation of certain proteolytic substrates. Adv Exp Med Biol 389, 209–219.
    [Google Scholar]
  23. Goodchild, A., Saunders, N. F., Ertan, H., Raftery, M., Guilhaus, M., Curmi, P. M. & Cavicchioli, R. ( 2004; ). A proteomic determination of cold adaptation in the Antarctic archaeon, Methanococcoides burtonii. Mol Microbiol 53, 309–321.[CrossRef]
    [Google Scholar]
  24. Grant, A. G., Flomen, R. M., Tizard, M. L. & Grant, D. A. ( 1992; ). Differential screening of a human pancreatic adenocarcinoma λgt11 expression library has identified increased transcription of elongation factor EF-1α in tumour cells. Int J Cancer 50, 740–745.[CrossRef]
    [Google Scholar]
  25. Hantke, K. ( 2005; ). Bacterial zinc uptake and regulators. Curr Opin Microbiol 8, 196–202.[CrossRef]
    [Google Scholar]
  26. Heath, C., Jeffries, A. C., Hough, D. W. & Danson, M. J. ( 2004; ). Discovery of the catalytic function of a putative 2-oxoacid dehydrogenase multienzyme complex in the thermophilic archaeon Thermoplasma acidophilum. FEBS Lett 577, 523–527.[CrossRef]
    [Google Scholar]
  27. Hotokezaka, Y., Tobben, U., Hotokezaka, H., Van Leyen, K., Beatrix, B., Smith, D. H., Nakamura, T. & Wiedmann, M. ( 2002; ). Interaction of the eukaryotic elongation factor 1A with newly synthesized polypeptides. J Biol Chem 277, 18545–18551.[CrossRef]
    [Google Scholar]
  28. Humbard, M. A., Stevens, S. M., Jr & Maupin-Furlow, J. A. ( 2006; ). Post-translational modification of the 20S proteasomal proteins of the archaeon Haloferax volcanii. J Bacteriol 188, 7521–7530.[CrossRef]
    [Google Scholar]
  29. Jiang, H. Y. & Wek, R. C. ( 2005; ). Phosphorylation of the α-subunit of the eukaryotic initiation factor-2 (eIF2α) reduces protein synthesis and enhances apoptosis in response to proteasome inhibition. J Biol Chem 280, 14189–14202.[CrossRef]
    [Google Scholar]
  30. Johnston, J. W., Myers, L. E., Ochs, M. M., Benjamin, W. H., Jr, Briles, D. E. & Hollingshead, S. K. ( 2004; ). Lipoprotein PsaA in virulence of Streptococcus pneumoniae: surface accessibility and role in protection from superoxide. Infect Immun 72, 5858–5867.[CrossRef]
    [Google Scholar]
  31. Jolley, K. A., Maddocks, D. G., Gyles, S. L., Mullan, Z., Tang, S. L., Dyall-Smith, M. L., Hough, D. W. & Danson, M. J. ( 2000; ). 2-Oxoacid dehydrogenase multienzyme complexes in the halophilic Archaea? Gene sequences and protein structural predictions. Microbiology 146, 1061–1069.
    [Google Scholar]
  32. Kanemori, M., Yanagi, H. & Yura, T. ( 1999; ). The ATP-dependent HslVU/ClpQY protease participates in turnover of cell division inhibitor SulA in Escherichia coli. J Bacteriol 181, 3674–3680.
    [Google Scholar]
  33. Karadzic, I. M. & Maupin-Furlow, J. A. ( 2005; ). Improvement of two-dimensional gel electrophoresis proteome maps of the haloarchaeon Haloferax volcanii. Proteomics 5, 354–359.[CrossRef]
    [Google Scholar]
  34. Kim, H. J., Joo, W. A., Cho, C. W. & Kim, C. W. ( 2006a; ). Halophile aldehyde dehydrogenase from Halobacterium salinarum. J Proteome Res 5, 192–195.[CrossRef]
    [Google Scholar]
  35. Kim, T. S., Jang, C. Y., Kim, H. D., Lee, J. Y., Ahn, B. Y. & Kim, J. ( 2006b; ). Interaction of Hsp90 with ribosomal proteins protects from ubiquitination and proteasome-dependent degradation. Mol Biol Cell 17, 824–833.
    [Google Scholar]
  36. Kirkland, P. A., Busby, J., Stevens, S., Jr & Maupin-Furlow, J. A. ( 2006; ). Trizol-based method for sample preparation and isoelectric focusing of halophilic proteins. Anal Biochem 351, 254–259.[CrossRef]
    [Google Scholar]
  37. Kloetzel, P. M. & Ossendorp, F. ( 2004; ). Proteasome and peptidase function in MHC-class-I-mediated antigen presentation. Curr Opin Immunol 16, 76–81.[CrossRef]
    [Google Scholar]
  38. Krieg, P. A., Varnum, S. M., Wormington, W. M. & Melton, D. A. ( 1989; ). The mRNA encoding elongation factor 1-α (EF-1 α) is a major transcript at the midblastula transition in Xenopus. Dev Biol 133, 93–100.[CrossRef]
    [Google Scholar]
  39. Kruse, T., Blagoev, B., Lobner-Olesen, A., Wachi, M., Sasaki, K., Iwai, N., Mann, M. & Gerdes, K. ( 2006; ). Actin homolog MreB and RNA polymerase interact and are both required for chromosome segregation in Escherichia coli. Genes Dev 20, 113–124.[CrossRef]
    [Google Scholar]
  40. Lee, J. H., Yeo, W. S. & Roe, J. H. ( 2004; ). Induction of the sufA operon encoding Fe-S assembly proteins by superoxide generators and hydrogen peroxide: involvement of OxyR, IHF and an unidentified oxidant-responsive factor. Mol Microbiol 51, 1745–1755.[CrossRef]
    [Google Scholar]
  41. Lill, R. & Muhlenhoff, U. ( 2005; ). Iron-sulfur-protein biogenesis in eukaryotes. Trends Biochem Sci 30, 133–141.[CrossRef]
    [Google Scholar]
  42. Lipford, J. R., Smith, G. T., Chi, Y. & Deshaies, R. J. ( 2005; ). A putative stimulatory role for activator turnover in gene expression. Nature 438, 113–116.[CrossRef]
    [Google Scholar]
  43. Lopez-Valenzuela, J. A., Gibbon, B. C., Hughes, P. A., Dreher, T. W. & Larkins, B. A. ( 2003; ). eEF1A isoforms change in abundance and actin-binding activity during maize endosperm development. Plant Physiol 133, 1285–1295.[CrossRef]
    [Google Scholar]
  44. Lupas, A. ( 1996; ). Prediction and analysis of coiled-coil structures. Methods Enzymol 266, 513–525.
    [Google Scholar]
  45. Malki, A., Caldas, T., Abdallah, J., Kern, R., Eckey, V., Kim, S. J., Cha, S. S., Mori, H. & Richarme, G. ( 2005; ). Peptidase activity of the Escherichia coli Hsp31 chaperone. J Biol Chem 280, 14420–14426.[CrossRef]
    [Google Scholar]
  46. Margolin, W. ( 2005; ). FtsZ and the division of prokaryotic cells and organelles. Nat Rev Mol Cell Biol 6, 862–871.[CrossRef]
    [Google Scholar]
  47. Mascarenhas, J., Volkov, A. V., Rinn, C., Schiener, J., Guckenberger, R. & Graumann, P. L. ( 2005; ). Dynamic assembly, localization and proteolysis of the Bacillus subtilis SMC complex. BMC Cell Biol 6, 28 [CrossRef]
    [Google Scholar]
  48. Maupin-Furlow, J. A., Gil, M. A., Karadzic, I. M., Kirkland, P. A. & Reuter, C. J. ( 2004; ). Proteasomes: perspectives from the archaea. Front Biosci 9, 1743–1758 (update 2004).[CrossRef]
    [Google Scholar]
  49. Maupin-Furlow, J. A., Gil, M. A., Humbard, M. A., Kirkland, P. A., Li, W., Reuter, C. J. & Wright, A. J. ( 2006; ). Proteasomes and other nanocompartmentalized proteases in archaea. In Complex Intracellular Structures in Prokaryotes, pp. 23–46. Edited by J. M. Shively. Berlin: Springer-Verlag.
  50. Mizusawa, S. & Gottesman, S. ( 1983; ). Protein degradation in Escherichia coli: the lon gene controls the stability of sulA protein. Proc Natl Acad Sci U S A 80, 358–362.[CrossRef]
    [Google Scholar]
  51. Nasmyth, K. & Haering, C. H. ( 2005; ). The structure and function of SMC and kleisin complexes. Annu Rev Biochem 74, 595–648.[CrossRef]
    [Google Scholar]
  52. Outten, F. W., Djaman, O. & Storz, G. ( 2004; ). A suf operon requirement for Fe-S cluster assembly during iron starvation in Escherichia coli. Mol Microbiol 52, 861–872.[CrossRef]
    [Google Scholar]
  53. Ransom-Hodgkins, W. D., Brglez, I., Wang, X. & Boss, W. F. ( 2000; ). Calcium-regulated proteolysis of eEF1A. Plant Physiol 122, 957–965.[CrossRef]
    [Google Scholar]
  54. Reuter, C. J. & Maupin-Furlow, J. A. ( 2004; ). Analysis of proteasome-dependent proteolysis in Haloferax volcanii cells, using short-lived green fluorescent proteins. Appl Environ Microbiol 70, 7530–7538.[CrossRef]
    [Google Scholar]
  55. Sastry, M. S. R., Korotkov, K., Brodsky, Y. & Baneyx, F. ( 2002; ). Hsp31, the Escherichia coli yedU gene product, is a molecular chaperone whose activity is inhibited by ATP at high temperatures. J Biol Chem 277, 46026–46034.[CrossRef]
    [Google Scholar]
  56. Shukla, H. D. ( 2006; ). Proteomic analysis of acidic chaperones, and stress proteins in extreme halophile Halobacterium NRC-1: a comparative proteomic approach to study heat shock response. Proteome Sci 4, 6 [CrossRef]
    [Google Scholar]
  57. Smith, D. M., Benaroudj, N. & Goldberg, A. ( 2006; ). Proteasomes and their associated ATPases: a destructive combination. J Struct Biol 156, 72–83.[CrossRef]
    [Google Scholar]
  58. Snowden, L. J., Blumentals, I. I. & Kelly, R. M. ( 1992; ). Regulation of proteolytic activity in the hyperthermophile Pyrococcus furiosus. Appl Environ Microbiol 58, 1134–1141.
    [Google Scholar]
  59. Verma, R., Chen, S., Feldman, R., Schieltz, D., Yates, J., Dohmen, J. & Deshaies, R. J. ( 2000; ). Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol Biol Cell 11, 3425–3439.[CrossRef]
    [Google Scholar]
  60. Wang, W. & Poovaiah, B. W. ( 1999; ). Interaction of plant chimeric calcium/calmodulin-dependent protein kinase with a homolog of eukaryotic elongation factor-1α. J Biol Chem 274, 12001–12008.[CrossRef]
    [Google Scholar]
  61. Wanner, C. & Soppa, J. ( 2002; ). Functional role for a 2-oxo acid dehydrogenase in the halophilic archaeon Haloferax volcanii. J Bacteriol 184, 3114–3121.[CrossRef]
    [Google Scholar]
  62. Weart, R. B., Nakano, S., Lane, B. E., Zuber, P. & Levin, P. A. ( 2005; ). The ClpX chaperone modulates assembly of the tubulin-like protein FtsZ. Mol Microbiol 57, 238–249.[CrossRef]
    [Google Scholar]
  63. Whiteheart, S. W., Shenbagamurthi, P., Chen, L., Cotter, R. J. & Hart, G. W. ( 1989; ). Murine elongation factor 1 α (EF-1 α) is posttranslationally modified by novel amide-linked ethanolamine-phosphoglycerol moieties. Addition of ethanolamine-phosphoglycerol to specific glutamic acid residues on EF-1 α. J Biol Chem 264, 14334–14341.
    [Google Scholar]
  64. Wilson, H. L., Aldrich, H. C. & Maupin-Furlow, J. A. ( 1999; ). Halophilic 20S proteasomes of the archaeon Haloferax volcanii: purification, characterization, and gene sequence analysis. J Bacteriol 181, 5814–5824.
    [Google Scholar]
  65. Zobel-Thropp, P., Yang, M. C., Machado, L. & Clarke, S. ( 2000; ). A novel post-translational modification of yeast elongation factor 1A. Methylesterification at the C terminus. J Biol Chem 275, 37150–37158.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/005769-0
Loading
/content/journal/micro/10.1099/mic.0.2007/005769-0
Loading

Data & Media loading...

Supplements

Magnified regions of 2-DE proteome maps of cells grown in the absence and presence of proteasome inhibitor LβL [PDF](1.2 MB).

PDF

Amino acid residues within ORF that differ from the 05/26/06 assembly of the DS2 TIGR genome annotation [PDF](128 KB).

PDF

Proteins unique and/or increased in cells cultivated in the presence or absence of the proteasome inhibitor LβL [PDF](425 KB).

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error