1887

Abstract

It has been suggested that resistance to class IIa bacteriocins occurs at either a low or a high level. In listerial strains, low-level resistance (2–4-fold) to class IIa bacteriocins is attributed to alterations in membrane lipid composition. In and , high-level resistance (1000-fold) correlates with inactivation of the operon, which encodes the EII mannose permease of the phosphotransferase system (PTS). Previous studies reported that in , high-level resistance involved the factor and the ManR activator. In this investigation, three genes associated with the resistance of JH2-2 to divercin V41, a pediocin-like bacteriocin from V41, were clearly identified by screening an insertional mutant library of JH2-2. These genes correspond to the well-known gene, which encodes factor, and to genes encoding a glycerophosphoryl diester phosphodiesterase (GlpQ) and a protein with a putative phosphodiesterase function (PDE). Resistance of the three mutants defective in the aforementioned genes appeared to be graduated: the mutant was more resistant than the mutant, which was more resistant than the mutant. Moreover, this resistance was specific to class IIa bacteriocins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/004812-0
2007-05-01
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/5/1609.html?itemId=/content/journal/micro/10.1099/mic.0.2006/004812-0&mimeType=html&fmt=ahah

References

  1. Antelmann H., Scharf C., Hecker M. 2000; Phosphate starvation-inducible proteins of Bacillus subtilis : proteomics and transcriptional analysis. J Bacteriol 182:4478–4490 [CrossRef]
    [Google Scholar]
  2. Bouttefroy A., Millière J. B. 2000; Nisin-curvacitin 13 combinations for avoiding regrowth of bacteriocin resistant cells of Listeria monocytogenes ATCC 15313. Int J Food Microbiol 62:65–75 [CrossRef]
    [Google Scholar]
  3. Cleveland J., Montville T. J., Nes I. F., Chikindas M. L. 2001; Bacteriocins: safe natural antimicrobials for food preservation. Int J Food Microbiol 71:1–20 [CrossRef]
    [Google Scholar]
  4. Comenge Y. R., Li L., Dubost L., Brouard J. P., Hugonnet J. E., Arthur M., Quintiliani R. Jr 2003; The CroRS two component regulatory system is required for intrinsic beta-lactam resistance in Enterococcus faecalis. J Bacteriol 185:7184–7192 [CrossRef]
    [Google Scholar]
  5. Connil N., Le Breton Y., Dousset X., Auffray Y., Rincé A., Prévost H. 2002; Identification of the Enterococcus faecalis tyrosine decarboxylase operon involved in tyramine production. Appl Environ Microbiol 68:3537–3544 [CrossRef]
    [Google Scholar]
  6. Cotter P. D., Guinane C. M., Hill C. 2002; The LisRK signal transduction system determines the sensitivity of Listeria monocytogenes to nisin and cephalosporins. Antimicrob Agents Chemother 46:2784–2790 [CrossRef]
    [Google Scholar]
  7. Dalet K., Briand C., Cenatiempo Y., Héchard Y. 2000; The rpoN gene of Enterococcus faecalis directs sensitivity to subclass IIa bacteriocins. Curr Microbiol 41:441–443 [CrossRef]
    [Google Scholar]
  8. Dalet K., Cenatiempo Y., Cossart P., Héchard Y. 2001; A σ 54-dependent PTS permease of the mannose family is responsible for sensitivity of Listeria monocytogenes to mesentericin Y105. Microbiology 147:3263–3269
    [Google Scholar]
  9. Drider D., Fimland G., McMullen L. M., Héchard Y., Prévost H. 2006; The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev 70:564–582 [CrossRef]
    [Google Scholar]
  10. Duffes F., Jenoe P., Boyaval P. 2000; Use of two dimensional electrophoresis to study differential protein expression in divercin V41-resistant and wild type strains of Listeria monocytogenes. Appl Environ Microbiol 66:4318–4326 [CrossRef]
    [Google Scholar]
  11. Dykes G. A., Hastings J. W. 1998; Fitness costs associated with class IIa bacteriocin resistance in Listeria monocytogenes B73. Lett Appl Microbiol 26:5–8 [CrossRef]
    [Google Scholar]
  12. Ennahar S., Sashihara T., Sonomoto K., Ishizaki A. 2000; Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol Rev 24:85–106 [CrossRef]
    [Google Scholar]
  13. Frégeau-Gallagher N. L., Sailer M., Niemczura W. P., Nakashima T. T., Stiles M. E., Vederas J. C. 1997; Three-dimensional structure of leucocin A in trifluoroethanol and dodecylphosphocholine micelles: spatial location of residues critical for biological activity in type IIa bacteriocins from lactic acid bacteria. Biochemistry 36:15062–15072 [CrossRef]
    [Google Scholar]
  14. Gravesen A., Ramnath M., Rechinger K. B., Andersen N., Jansch L., Hastings J. W., Knochel S., Héchard Y. 2002; High-level resistance to class IIa bacteriocins is associated with one general mechanism in Listeria monocytogenes. Microbiology 148:2361–2369
    [Google Scholar]
  15. Groisman E. A. 2001; The pleiotropic two-component regulatory system PhoP-PhoQ. J Bacteriol 183:1835–1842 [CrossRef]
    [Google Scholar]
  16. Groisman E. A., Heffron F., Solomon F. 1992; Molecular genetic analysis of the Escherichia coli phoP locus. J Bacteriol 174:486–491
    [Google Scholar]
  17. Hancock L. E., Perego M. 2004; Systematic inactivation and phenotypic characterization of two-component signal transduction systems of Enterococcus faecalis V583. J Bacteriol 186:7951–7958 [CrossRef]
    [Google Scholar]
  18. Héchard Y., Derijard B., Lettelier F., Cenatiempo Y. 1992; Characterization and purification of mesentericin Y105, an anti- Listeria bacteriocin from Leuconostoc mesenteroides. J Gen Microbiol 138:2725–2731 [CrossRef]
    [Google Scholar]
  19. Héchard Y., Pelletier C., Cenatiempo Y., Frère J. 2001; Analysis of σ 54-dependent genes in Enterococcus faecalis : a mannose PTS permease (EIIMan) is involved in sensitivity to a bacteriocin, mesentericin Y105. Microbiology 147:1575–1580
    [Google Scholar]
  20. Hofmann K., Stoffel W. 1993; TMbase – a database of membrane spanning proteins segments. Biol Chem Hoppe-Seyler 374:166
    [Google Scholar]
  21. Kuroda M., Kuroda H., Oshima T., Takeuchi F., Mori H., Hiramatsu K. 2003; Two-component system VraSR positively modulates the regulation of cell-wall biosynthesis pathway in Staphylococcus aureus. Mol Microbiol 49:807–821
    [Google Scholar]
  22. Law J., Buist G., Haandrikman A., Kok J., Venema G., Leenhouts K. 1995; A system to generate chromosomal mutations in Lactococcus lactis which allows fast analysis of targeted genes. J Bacteriol 177:7011–7018
    [Google Scholar]
  23. Le Breton Y., Lemarinier S., Auffray Y., Mazé A., Hartke A., Rincé A. 2002; Isolation and characterization of bile salts-sensitive mutants of Enterococcus faecalis. Curr Microbiol 45:434–439 [CrossRef]
    [Google Scholar]
  24. Le Breton Y., Benachour A., Auffray Y., Boël G., Prévost H., Rincé A. 2003; Molecular characterization of Enterococcus faecalis two-component signal transduction pathways related to environmental stresses. Environ Microbiol 5:329–337 [CrossRef]
    [Google Scholar]
  25. Maguin E., Duwat T., Hege T., Ehrlich D., Gruss A. 1992; New thermosensitive plasmid for gram-positive bacteria. J Bacteriol 174:5633–5638
    [Google Scholar]
  26. Moss J. E., Fisher P. E., Vick B., Groisman E. A., Zychilinsky A. 2001; The regulatory protein PhoP controls the resolution of Shigella flexneri infections. Cell Microbiol 2:443–452
    [Google Scholar]
  27. Muller M. R. A., Wolfrum G., Stolz P., Ehrmann M. A., Vogel R. F. 2001; Monitoring the growth of Lactobacillus species during a rye flour fermentation. Food Microbiol 18:217–227 [CrossRef]
    [Google Scholar]
  28. Naghmouchi K., Drider D., Kheadr E., Lacroix C., Fliss I., Prévost H. 2006; Multiple characterizations of Listeria monocytogenes sensitive and insensitive variants to divergicin M35, a new pediocin-like bacteriocin. J Appl Microbiol 100:29–39 [CrossRef]
    [Google Scholar]
  29. Pilet M. F., Dousset X., Novel G., Desmazaud M., Piard J. C., Barré R. 1995; Evidence for two bacteriocins produced by Carnobacterium piscicola and Carnobacterium divergens isolated from fish and active against Listeria monocytogenes. J Food Prot 58:256–262
    [Google Scholar]
  30. Postma P. W., Lengeler J. W., Jacobson G. R. 1993; Phosphoenolpyruvate : carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594
    [Google Scholar]
  31. Ramnath M., Beukes M., Tamura K., Hastings J. W. 2000; Absence of a putative mannose-specific phosphotransferase system enzyme IIAB component in a leucocin A-resistant strain of Listeria monocytogenes , as shown by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Appl Environ Microbiol 66:3098–3101 [CrossRef]
    [Google Scholar]
  32. Ramnath M., Arous S., Gravensen A., Hastings J. W., Héchard Y. 2004; Expression of mptC of Listeria monocytogenes induces sensitivity to class IIa bacteriocins in Lactococcus lactis. Microbiology 150:2663–2668 [CrossRef]
    [Google Scholar]
  33. Rekhif N., Atrih A., Lefèbvre G. 1994; Selection and properties of spontaneous mutants of Listeria monocytogenes ATCC 15313 resistant to different bacteriocins produced by lactic acid bacteria strains. Curr Microbiol 28:237–241 [CrossRef]
    [Google Scholar]
  34. Richard C., Drider D., Elmorjani K., Marion D., Prévost H. 2004; Heterologous expression and purification of active divercin V41, a class IIa bacteriocin encoded by a synthetic gene in Escherichia coli. J Bacteriol 186:4276–4284 [CrossRef]
    [Google Scholar]
  35. Terzaghi B. E., Sandine W. E. 1975; Improved medium for lactic streptococci and their bacteriophages. Appl Environ Microbiol 29:807–813
    [Google Scholar]
  36. Uhart M., Ravishankar S., Maks N. D. 2004; Control of Listeria monocytogenes with combined antimicrobials on beef franks stored at 4 °C. J Food Prot 67:2296–2301
    [Google Scholar]
  37. Uteng M., Hauge H. H., Markwick P. R., Fimland G., Mantzilas D., Nissen-Meyer J., Muhle-Goll C. 2003; Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide sakacin P and a sakacin P variant that is structurally stabilized by an inserted C-terminal disulfide bridge. Biochemistry 42:11417–11426 [CrossRef]
    [Google Scholar]
  38. Vadyvaloo V., Hastings J. W., Rautenbach M., van der Merwe M. J. 2002; Membranes of class IIa bacteriocin-resistant Listeria monocytogenes cells contain increased levels of desaturated and short-acyl-chain phosphatidylglycerols. Appl Environ Microbiol 8:5223–5230
    [Google Scholar]
  39. Vadyvaloo V., Snoep J. L., Hastings J. W., Rautenbach M. 2004; Physiological implications of class IIa bacteriocins resistance in Listeria monocytogenes. Microbiology 150:335–340 [CrossRef]
    [Google Scholar]
  40. Wachsman M. B., Farias M. E., Takeda E., Sesma F., Coto C. E., de Ruiz Holgado A. P., de Torres R. A. 1999; Antiviral activity of enterocin CRL35 against herpes viruses. Int J Antimicrob Agents 12:293–299 [CrossRef]
    [Google Scholar]
  41. Wachsman M. B., Castilla V., Sesma F., Coto C. E., de Ruiz Holgado A. P., de Torres R. A. 2003; Enterocin CRL35 inhibits late stages of HSV-1 and HSV-2 replication in vitro. Antiviral Res 58:17–24 [CrossRef]
    [Google Scholar]
  42. Wirth R., An F. Y., Clewell D. B. 1986; Highly efficient protoplast transformation system for Streptococcus faecalis and a new Escherichia coli - S. faecalis shuttle vector. J Bacteriol 165:831–836
    [Google Scholar]
  43. Yagi Y., Clewell D. B. 1980; Recombination-deficient mutant of Streptococcus faecalis. J Bacteriol 143:966–970
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.2006/004812-0
Loading
/content/journal/micro/10.1099/mic.0.2006/004812-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error