1887

Abstract

Approximately 200 serogroups of exist, with only two, O1 and O139, responsible for epidemic and pandemic cholera. Strains from these serogroups have evolved from a common progenitor, with lateral gene transfer largely driving their emergence. These strains are so closely related that separation using single- or multi-locus phylogeny has proven difficult. strains contain a genetic system called the integron that is located in the chromosome and that can integrate and excise DNA elements called mobile gene cassettes (MGCs) by site-specific recombination. Large arrays of MGCs are found in strains. For instance, the O1 El Tor strain N16961 contains 179 MGCs. Since integron arrays are dynamic through recombination and excision of MGCs, it was hypothesized that the MGC composition in a given pandemic strain would be useful as a phylogenetic typing system. To address this, a PCR-based method was used to rapidly characterize the MGC composition of arrays. The results showed that the MGC composition of pandemic cassette arrays is relatively conserved, providing further evidence that these strains have evolved from a common progenitor. Comparison of MGC composition between the pandemic strains was also able to resolve the evolution of O139 from a subgroup of O1 El Tor. This level of differentiation of closely related isolates was more sensitive than conventional single-gene phylogeny or multi-locus sequence analysis. Using this method, novel MGCs from an O1 classical strain and an Argentinian O139 isolate were also identified, and a major deletion in the MGC array in all pandemic O139 strains and a subset of O1 El Tor strains was identified. Analysis of sequenced integron arrays showed that their evolution can proceed by rearrangements and deletions/insertions of large portions of MGCs in addition to the insertion or excision of single MGCs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/001065-0
2007-05-01
2020-08-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/5/1488.html?itemId=/content/journal/micro/10.1099/mic.0.2006/001065-0&mimeType=html&fmt=ahah

References

  1. Arakawa E., Murase T., Matsushita S., Shimada T., Yamai S., Ito T., Watanabe H.. 2000; Pulsed-field gel electrophoresis-based molecular comparison of Vibrio cholerae O1 isolates from domestic and imported cases of cholera in Japan. J Clin Microbiol38:424–426
    [Google Scholar]
  2. Ausubel F. A., Brent R., Kingston R. F., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. 1998; Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  3. Barker A., Clark C. A., Manning P. A.. 1994; Identification of VCR, a repeated sequence associated with a locus encoding a hemagglutinin in Vibrio cholerae O1. J Bacteriol176:5450–5458
    [Google Scholar]
  4. Boucher Y., Nesbo C., Joss M., Robinson A., Mabbutt B., Gillings M., Doolittle W. F., Stokes H. W.. 2006; Recovery and evolutionary analysis of complete integron gene cassette arrays from Vibrio. BMC Evol Biol6:3[CrossRef]
    [Google Scholar]
  5. Byun R., Elbourne L. D. H., Lan R., Reeves P. R.. 1999; Evolutionary relationships of pathogenic clones of Vibrio cholerae by sequence analysis of four housekeeping genes. Infect Immun67:1116–1124
    [Google Scholar]
  6. Castañeda N. C., Pichel M., Orman B., Binsztein N., Roy P. H., Centrón D.. 2005; Genetic characterization of Vibrio cholerae isolates from Argentina by V. cholerae repeated sequences-polymerase chain reaction. Diagn Microbiol Infect Dis53:175–183[CrossRef]
    [Google Scholar]
  7. Clark C. A., Purins L., Kaewrakon P., Focareta T., Manning P. A.. 2000; The Vibrio cholerae O1 chromosomal integron. Microbiology146:2605–2612
    [Google Scholar]
  8. Collis C., Hall R.. 1995; Expression of antibiotic resistance genes in the integrated cassettes of integrons. Antimicrob Agents Chemother39:155–162[CrossRef]
    [Google Scholar]
  9. Dziejman M., Serruto D., Tam V. C., Sturtevant D., Diraphat P., Faruque S. M., Rahman M. H., Heidelberg J. F., Decker J.. other authors 2005; Genomic characterization of non-O1, non-O139 Vibrio cholerae reveals genes for a type III secretion system. Proc Natl Acad Sci U S A102:3465–3470[CrossRef]
    [Google Scholar]
  10. Faruque S. M., Mekalanos J. J.. 2003; Pathogenicity islands and phages in Vibrio cholerae evolution. Trends Microbiol11:505–510[CrossRef]
    [Google Scholar]
  11. Faruque S. M., Albert M. J., Mekalanos J. J.. 1998; Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. Microbiol Mol Biol Rev62:1301–1314
    [Google Scholar]
  12. Franzon V. L., Barker A., Manning P., A.. 1993; Nucleotide sequence encoding the mannose-fucose-resistant hemagglutinin of Vibrio cholerae O1 and construction of a mutant. Infect Immun61:3032–3037
    [Google Scholar]
  13. Gillings M. R., Holley M. P., Stokes H. W., Holmes A. J.. 2005; Integrons in Xanthomonas : a source of species genome diversity. Proc Natl Acad Sci U S A102:4419–4424[CrossRef]
    [Google Scholar]
  14. Hall R. M., Collis C. M., Kim M.-J., Partridge S. R., Recchia G. D., Stokes H. W.. 1999; Mobile gene cassettes and integrons in evolution. Ann N Y Acad Sci870:68–80[CrossRef]
    [Google Scholar]
  15. Holmes A. J., Gillings M. R., Nield B. S., Mabbutt B. C., Nevalainen K. M. H., Stokes H. W.. 2003; The gene cassette metagenome is a basic resource for bacterial genome evolution. Environ Microbiol5:383–394[CrossRef]
    [Google Scholar]
  16. Kaper J., Levine M., Morris J. Jr. 1995; Cholera. Clin Microbiol Rev8:48–86
    [Google Scholar]
  17. Kim Y. R., Lee S. E., Kim C. M., Kim S. Y., Shin E. K., Shin D. H., Chung S. S., Choy H. E., Progulske-Fox A.. other authors 2003; Characterization and pathogenic significance of Vibrio vulnificus antigens preferentially expressed in septicemic patients. Infect Immun71:5461–5471[CrossRef]
    [Google Scholar]
  18. Kotetishvili M., Stine O. C., Chen Y., Kreger A., Sulakvelidze A., Sozhamannan S., Morris J. G. Jr. 2003; Multilocus sequence typing has better discriminatory ability for typing Vibrio cholerae than does pulsed-field gel electrophoresis and provides a measure of phylogenetic relatedness. J Clin Microbiol41:2191–2196[CrossRef]
    [Google Scholar]
  19. Lan R., Reeves P. R.. 2002; Pandemic spread of cholera: genetic diversity and relationships within the seventh pandemic clone of Vibrio cholerae determined by amplified fragment length polymorphism. J Clin Microbiol40:172–181[CrossRef]
    [Google Scholar]
  20. Lee J. H., Yang S.-T., Rho S.-H., Im Y. J., Kim S. Y., Kim Y. R., Kim M.-K., Kang G. B., Kim J. I.. other authors 2006; Crystal structure and functional studies reveal that PAS factor from Vibrio vulnificus is a novel member of the saposin-fold family. J Mol Biol355:491–500[CrossRef]
    [Google Scholar]
  21. Mazel D., Dychinco B., Webb V. A., Davies J.. 1998; A distinctive class of integron in the Vibrio cholerae genome. Science280:605–608[CrossRef]
    [Google Scholar]
  22. Michael C. A., Gillings M. R., Holmes A. J., Hughes L., Andrew N. R., Holley M. P., Stokes H. W.. 2004; Mobile gene cassettes: a fundamental resource for bacterial evolution. Am Nat164:1–12[CrossRef]
    [Google Scholar]
  23. O'Shea Y. A., Reen F. J., Quirke A. M., Boyd E. F.. 2004; Evolutionary genetic analysis of the emergence of epidemic Vibrio cholerae isolates on the basis of comparative nucleotide sequence analysis and multilocus virulence gene profiles. J Clin Microbiol42:4657–4671[CrossRef]
    [Google Scholar]
  24. Posada D., Crandall K. A.. 1998; modeltest: testing the model of DNA substitution. Bioinformatics14:817–818[CrossRef]
    [Google Scholar]
  25. Ramamurthy T., Yamasaki S., Takeda Y., Nair G. B.. 2003; Vibrio cholerae O139 Bengal: odyssey of a fortuitous variant. Microbes Infect5:329–344[CrossRef]
    [Google Scholar]
  26. Rowe-Magnus D. A., Guerout A.-M., Biskri L., Bouige P., Mazel D.. 2003; Comparative analysis of superintegrons: engineering extensive genetic diversity in the Vibrionaceae. Genome Res13:428–442[CrossRef]
    [Google Scholar]
  27. Salim A., Lan R., Reeves P. R.. 2005; Vibrio cholerae pathogenic clones. Emerg Infect Dis11:1758–1760[CrossRef]
    [Google Scholar]
  28. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Shimada T., Balakrish Nair G., Deb B. C., Albert M. J., Sack R. B., Takeda Y.. 1993; Outbreak of Vibrio cholerae non-O1 in India and Bangladesh. Lancet341:1346–1347
    [Google Scholar]
  30. Stine O. C., Sozhamannan S., Gou Q., Zheng S., Johnson J. A., Morris J. G. Jr. 2000; Phylogeny of Vibrio cholerae based on recA sequence. Infect Immun68:7180–7185[CrossRef]
    [Google Scholar]
  31. Stokes H. W., O'Gorman D. B., Recchia G. D., Parsekhian M., Hall R. M.. 1997; Structure and function of 59-base element recombination sites associated with mobile gene cassettes. Mol Microbiol26:731–745[CrossRef]
    [Google Scholar]
  32. Stroeher U. H., Jedani K. E., Dredge B. K., Morona R., Brown M. H., Karageorgos L. E., Albert M. J., Manning P. A.. 1995; Genetic rearrangements in the rfb regions of Vibrio cholerae O1 and O139. Proc Natl Acad Sci U S A92:10374–10378[CrossRef]
    [Google Scholar]
  33. Stroeher U. H., Parasivam G., Dredge B. K., Manning P. A.. 1997; Novel Vibrio cholerae O139 genes involved in lipopolysaccharide biosynthesis. J Bacteriol179:2740–2747
    [Google Scholar]
  34. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882[CrossRef]
    [Google Scholar]
  35. Tillett D., Neilan B. A.. 2000; Xanthogenate nucleic acid isolation from cultured and envrionmental cyanobacteria. J Phycol36:251–258[CrossRef]
    [Google Scholar]
  36. van Dongen W. M. A. M., DeGraaf F. K.. 1986; Molecular cloning of a gene coding for a Vibrio cholerae haemagglutinin. J Gen Microbiol132:2225–2234
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/001065-0
Loading
/content/journal/micro/10.1099/mic.0.2006/001065-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error