1887

Abstract

serovar Typhimurium can be internalized by immature dendritic cells (DCs). The interacting host and bacterial molecules initiating this process remain uncharacterized. The objective of this study was to investigate whether specific fimbriae are involved in the early step of binding and uptake of by DCs. Type 1 fimbriated serovar Typhimurium or recombinant expressing the type 1 fimbriae showed a significantly greater ability to attach to murine bone-marrow-derived DCs than non-fimbriated bacteria. The FimH adhesin was required for efficient interactions with DCs, since fimbriated mutants were impaired in both binding and internalization. Finally, the internalization involved a FimH-dependent process but did not require , a gene essential for -mediated invasion of mammalian epithelial cells. Collectively, these data suggest that the bacterial interaction of DCs through the type 1 fimbrial adhesin FimH is sufficient to target serovar Typhimurium for cellular uptake.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/000331-0
2007-04-01
2020-04-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/4/1059.html?itemId=/content/journal/micro/10.1099/mic.0.2006/000331-0&mimeType=html&fmt=ahah

References

  1. Adkins J. N., Mottaz H. M., Norbeck A. D., Gustin J. K., Rue J., Clauss T. R., Purvine S. O., Rodland K. D., Heffron F., Smith R. D.. 2006; Analysis of the Salmonella typhimurium proteome through environmental response towards infectious conditions. Mol Cell Proteomics5:1450–1461[CrossRef]
    [Google Scholar]
  2. Alpuche-Aranda C. M., Racoosin E. L., Swanson J. A., Miller S. I.. 1994; Salmonella stimulate macrophage macropinocytosis and persist within spacious phagosomes. J Exp Med179:601–608[CrossRef]
    [Google Scholar]
  3. Baorto D. M., Gao Z., Malaviya R., Dustin M. L., van der Merwe A., Lublin D. M., Abraham S. N.. 1997; Survival of FimH-expressing enterobacteria in macrophages relies on glycolipid traffic. Nature389:636–639[CrossRef]
    [Google Scholar]
  4. Bäumler A. J., Tsolis R. M., Bowe F. A., Kusters J. G., Hoffmann S., Heffron F.. 1996a; The pef fimbrial operon of Salmonella typhimurium mediates adhesion to murine small intestine and is necessary for fluid accumulation in the infant mouse. Infect Immun64:61–68
    [Google Scholar]
  5. Bäumler A. J., Tsolis R. M., Heffron F.. 1996b; The lpf fimbrial operon mediates adhesion of Salmonella typhimurium to murine Peyer's patches. Proc Natl Acad Sci U S A93:279–283[CrossRef]
    [Google Scholar]
  6. Bäumler A. J., Tsolis R. M., Heffron F.. 1996c; Contribution of fimbrial operons to attachment to and invasion of epithelial cell lines by Salmonella typhimurium. Infect Immun64:1862–1865
    [Google Scholar]
  7. Bäumler A. J., Tsolis R. M., Heffron F.. 1997; Fimbrial adhesins of Salmonella typhimurium . Role in bacterial interactions with epithelial cells. Adv Exp Med Biol412:149–158
    [Google Scholar]
  8. Blomfield I. C., McClain M. S., Eisenstein B. I.. 1991; Type 1 fimbriae mutants of Escherichia coli K12: characterization of recognized afimbriate strains and construction of new fim deletion mutants. Mol Microbiol5:1439–1445[CrossRef]
    [Google Scholar]
  9. Boddicker J. D., Ledeboer N. A., Jagnow J., Jones B. D., Clegg S.. 2002; Differential binding to and biofilm formation on, HEp-2 cells by Salmonella enterica serovar Typhimurium is dependent upon allelic variation in the fimH gene of the fim gene cluster. Mol Microbiol45:1255–1265[CrossRef]
    [Google Scholar]
  10. Bueno S. M., Tobar J. A., Iruretagoyena M. I., Kalergis A. M.. 2005; Molecular interactions between dendritic cells and Salmonella : escape from adaptive immunity and implications on pathogenesis. Crit Rev Immunol25:389–403[CrossRef]
    [Google Scholar]
  11. Cheminay C., Schoen M., Hensel M., Wandersee-Steinhauser A., Ritter U., Korner H., Rollinghoff M., Hein J.. 2002; Migration of Salmonella typhimurium -harboring bone marrow-derived dendritic cells towards the chemokines CCL19 and CCL21. Microb Pathog32:207–218[CrossRef]
    [Google Scholar]
  12. Clark M. A., Hirst B. H., Jepson M. A.. 1998; Inoculum composition and Salmonella pathogenicity island 1 regulate M-cell invasion and epithelial destruction by Salmonella typhimurium. Infect Immun66:724–731
    [Google Scholar]
  13. Clegg S., Swenson D.. 1994; Salmonella fimbriae. In Fimbriae Adhesion, Genetics, Biogenesis and Vaccines pp105–113 Edited by Klemm P.. Boca Raton: CRC Press;
    [Google Scholar]
  14. Didierlaurent A., Sirard J. C., Kraehenbuhl J. P., Neutra M. R.. 2002; How the gut senses its content. Cell Microbiol4:61–72[CrossRef]
    [Google Scholar]
  15. Dodd D. C., Eisenstein B. I.. 1982; Antigenic quantitation of type 1 fimbriae on the surface of Escherichia coli cells by an enzyme-linked immunosorbent inhibition assay. Infect Immun38:764–773
    [Google Scholar]
  16. Drecktrah D., Knodler L. A., Ireland R., Steele-Mortimer O.. 2006; The mechanism of Salmonella entry determines the vacuolar environment and intracellular gene expression. Traffic7:39–51[CrossRef]
    [Google Scholar]
  17. Elsinghorst E. A.. 1994; Measurement of invasion by gentamicin resistance. Methods Enzymol236:405–420
    [Google Scholar]
  18. Eriksson S., Chambers B. J., Rhen M.. 2003; Nitric oxide produced by murine dendritic cells is cytotoxic for intracellular Salmonella enterica sv. Typhimurium. Scand J Immunol58:493–502[CrossRef]
    [Google Scholar]
  19. Ernst R. K., Dombroski D. M., Merrick J. M.. 1990; Anaerobiosis, type 1 fimbriae, and growth phase are factors that affect invasion of HEp-2 cells by Salmonella typhimurium. Infect Immun58:2014–2016
    [Google Scholar]
  20. Foreman-Wykert A. K., Miller J. F.. 2003; Hypervirulence and pathogen fitness. Trends Microbiol11:105–108[CrossRef]
    [Google Scholar]
  21. Galan J. E.. 2001; Salmonella interactions with host cells: type III secretion at work. Annu Rev Cell Dev Biol17:53–86[CrossRef]
    [Google Scholar]
  22. Geijtenbeek T. B., van Vliet S. J., Engering A., ‘t Hart B. A., van Kooyk Y.. 2004; Self- and nonself-recognition by C-type lectins on dendritic cells. Annu Rev Immunol22:33–54[CrossRef]
    [Google Scholar]
  23. Hancox L. S., Yeh K. S., Clegg S.. 1998; Construction and characterization of type 1 non-fimbriate and non-adhesive mutants of Salmonella typhimurium. FEMS Immunol Med Microbiol19:289–296
    [Google Scholar]
  24. Hermant D., Arricau N., Parsot C., Popoff M. Y., Ménard R.. 1995; Functional conservation of the Salmonella and Shigella effectors of entry into epithelial cells. Mol Microbiol17:781–789[CrossRef]
    [Google Scholar]
  25. Hersh D., Monack D. M., Smith M. R., Ghori N., Falkow S., Zychlinsky A.. 1999; The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc Natl Acad Sci U S A96:2396–2401[CrossRef]
    [Google Scholar]
  26. Hopkins S. A., Niedergang F., Corthesy-Theulaz I. E., Kraehenbuhl J.-P.. 2000; A recombinant Salmonella typhimurium vaccine strain is taken up and survives within murine Peyer's patch dendritic cells. Cell Microbiol2:59–68[CrossRef]
    [Google Scholar]
  27. Horiuchi S., Inagaki Y., Okamura N., Nakaya R., Yamamoto N.. 1992; Type 1 pili enhance the invasion of Salmonella braenderup and Salmonella typhimurium to HeLa cells. Microbiol Immunol36:593–602[CrossRef]
    [Google Scholar]
  28. Inaba K., Inaba M., Romani N., Aya H., Deguchi M., Ikehara S., Muramatsu S., Steinman R. M.. 1992; Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med176:1693–1702[CrossRef]
    [Google Scholar]
  29. Jepson M. A., Clark M. A.. 2001; The role of M cells in Salmonella infection. Microbes Infect3:1183–1190[CrossRef]
    [Google Scholar]
  30. Kiama S. G., Dreher D., Cochand L., Kok M., Obregon C., Nicod L., Gehr P.. 2006; Host cell responses of Salmonella typhimurium infected human dendritic cells. Immunol Cell Biol84:475–481[CrossRef]
    [Google Scholar]
  31. Lee C. A., Jones B. D., Falkow S.. 1992; Identification of a Salmonella typhimurium invasion locus by selection for hyperinvasive mutants. Proc Natl Acad Sci U S A89:1847–1851[CrossRef]
    [Google Scholar]
  32. Lockman H. A., Curtiss III, R.. 1992a; Virulence of non-type 1-fimbriated and nonfimbriated nonflagellated Salmonella typhimurium mutants in murine typhoid fever. Infect Immun60:491–496
    [Google Scholar]
  33. Lockman H. A., Curtiss III, R.. 1992b; Isolation and characterization of conditional adherent and non-type 1 fimbriated Salmonella typhimurium mutants. Mol Microbiol6:933–945[CrossRef]
    [Google Scholar]
  34. Lostroh C. P., Lee C. A.. 2001; The Salmonella pathogenicity island-1 type III secretion system. Microbes Infect3:1281–1291[CrossRef]
    [Google Scholar]
  35. Lutz M. B., Kukutsch N., Ogilvie A. L., Rossner S., Koch F., Romani N., Schuler G.. 1999; An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods223:77–92[CrossRef]
    [Google Scholar]
  36. Marriott I., Hammond T. G., Thomas E. K., Bost K. L.. 1999; Salmonella efficiently enter and survive within cultured CD11c+ dendritic cells initiating cytokine expression. Eur J Immunol29:1107–1115[CrossRef]
    [Google Scholar]
  37. Maurer L., Orndorff P. E.. 1987; Identification and characterization of genes determining receptor binding and pilus length of Escherichia coli type 1 pili. J Bacteriol169:640–645
    [Google Scholar]
  38. Morgan E., Campbell J. D., Rowe S. C., Bispham J., Stevens M. P., Bowen A. J., Barrow P. A., Maskell D. J., Wallis T. S.. 2004; Identification of host-specific colonization factors of Salmonella enterica serovar Typhimurium. Mol Microbiol54:994–1010[CrossRef]
    [Google Scholar]
  39. Murray R. A., Lee C. A.. 2000; Invasion genes are not required for Salmonella enterica serovar Typhimurium to breach the intestinal epithelium: evidence that salmonella pathogenicity island 1 has alternative functions during infection. Infect Immun68:5050–5055[CrossRef]
    [Google Scholar]
  40. Niedergang F., Sirard J. C., Blanc C. T., Kraehenbuhl J. P.. 2000; Entry and survival of Salmonella typhimurium in dendritic cells and presentation of recombinant antigens do not require macrophage-specific virulence factors. Proc Natl Acad Sci U S A97:14650–14655[CrossRef]
    [Google Scholar]
  41. Niess J. H., Brand S., Gu X., Landsman L., Jung S., McCormick B. A., Vyas J. M., Boes M., Ploegh H. L.. & other authors 2005; CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science307:254–258[CrossRef]
    [Google Scholar]
  42. Ofek I., Sharon N.. 1988; Lectinophagocytosis: a molecular mechanism of recognition between cell surface sugars and lectins in the phagocytosis of bacteria. Infect Immun56:539–547
    [Google Scholar]
  43. Penheiter K. L., Mathur N., Giles D., Fahlen T., Jones B. D.. 1997; Non-invasive Salmonella typhimurium mutants are avirulent because of an inability to enter and destroy M cells of ileal Peyer's patches. Mol Microbiol24:697–709[CrossRef]
    [Google Scholar]
  44. Petrovska L., Aspinall R. J., Barber L., Clare S., Simmons C. P., Stratford R., Khan S. A., Lemoine N. R., Frankel G.. & other authors 2004; Salmonella enterica serovar Typhimurium interaction with dendritic cells: impact of the sifA gene. Cell Microbiol6:1071–1084[CrossRef]
    [Google Scholar]
  45. Rescigno M., Urbano M., Valzasina B., Francolini M., Rotta G., Bonasio R., Granucci F., Kraehenbuhl J. P., Ricciardi-Castagnoli P.. 2001; Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol2:361–367[CrossRef]
    [Google Scholar]
  46. Rimoldi M., Chieppa M., Salucci V., Avogadri F., Sonzogni A., Sampietro G. M., Nespoli A., Viale G., Allavena P., Rescigno M.. 2005; Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nat Immunol6:507–514[CrossRef]
    [Google Scholar]
  47. Salazar-Gonzalez R. M., Niess J. H., Zammit D. J., Ravindran R., Srinivasan A., Maxwell J. R., Stoklasek T., Yadav R., Williams I. R.. & other authors 2006; CCR6-mediated dendritic cell activation of pathogen-specific T cells in Peyer's patches. Immunity24:623–632[CrossRef]
    [Google Scholar]
  48. Shin J. S., Gao Z., Abraham S. N.. 2000; Involvement of cellular caveolae in bacterial entry into mast cells. Science289:785–788[CrossRef]
    [Google Scholar]
  49. Sierro F., Dubois B., Coste A., Kaiserlian D., Kraehenbuhl J. P., Sirard J. C.. 2001; Flagellin stimulation of intestinal epithelial cells triggers CCL20-mediated migration of dendritic cells. Proc Natl Acad Sci U S A98:13722–13727[CrossRef]
    [Google Scholar]
  50. Silhavy T. J., Berman M. L., Enquist L. W.. 1984; Experiments with Gene Fusion Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  51. Thankavel K., Shah A. H., Cohen M. S., Ikeda T., Lorenz R. G., Curtiss R. 3rd, Abraham S. N.. 1999; Molecular basis for the enterocyte tropism exhibited by Salmonella typhimurium type 1 fimbriae. J Biol Chem274:5797–5809[CrossRef]
    [Google Scholar]
  52. van der Velden A. W., Baumler A. J., Tsolis R. M., Heffron F.. 1998; Multiple fimbrial adhesins are required for full virulence of Salmonella typhimurium in mice. Infect Immun66:2803–2808
    [Google Scholar]
  53. van der Velden A. W., Velasquez M., Starnbach M. N.. 2003; Salmonella rapidly kill dendritic cells via a caspase-1-dependent mechanism. J Immunol171:6742–6749[CrossRef]
    [Google Scholar]
  54. Vazquez-Torres A., Fang F. C.. 2000; Cellular routes of invasion by enteropathogens. Curr Opin Microbiol3:54–59[CrossRef]
    [Google Scholar]
  55. Vazquez-Torres A., Jones-Carson J., Baumler A. J., Falkow S., Valdivia R., Brown W., Le M., Berggren R., Parks W. T., Fang F. C.. 1999; Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature401:804–808[CrossRef]
    [Google Scholar]
  56. Wick M. J.. 2002; The role of dendritic cells during Salmonella infection. Curr Opin Immunol14:437–443[CrossRef]
    [Google Scholar]
  57. Wick M. J.. 2003; The role of dendritic cells in the immune response to Salmonella. Immunol Lett85:99–102[CrossRef]
    [Google Scholar]
  58. Yrlid U., Svensson M., Johansson C., Wick M. J.. 2000; Salmonella infection of bone marrow-derived macrophages and dendritic cells: influence on antigen presentation and initiating an immune response. FEMS Immunol Med Microbiol27:313–320[CrossRef]
    [Google Scholar]
  59. Zar J. H.. 1974; Biostatistical Analysis Englewood Cliffs, NJ: Prentice–Hall;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/000331-0
Loading
/content/journal/micro/10.1099/mic.0.2006/000331-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error