1887

Abstract

The opportunistic pathogen colonizes the oral cavity and gastrointestinal tract. Adherence to host cells, extracellular matrix and salivary glycoproteins that coat oral surfaces, including prostheses, is an important prerequisite for colonization. In addition, interactions of with commensal oral streptococci are suggested to promote retention and persistence of fungal cells in mixed-species communities. The hyphal filament specific cell wall protein Als3, a member of the Als protein family, is a major determinant in adherence. Here, we utilized site-specific in-frame deletions within Als3 expressed on the surface of heterologous to determine regions involved in interactions of Als3 with . N-terminal region amino acid residue deletions Δ166–225, Δ218–285, Δ270–305 and Δ277–286 were each effective in inhibiting binding of to Als3. In addition, these deletions differentially affected biofilm formation, hydrophobicity, and adherence to silicone and human tissue proteins. Deletion of the central repeat domain (Δ434–830) did not significantly affect interaction of Als3 with SspB protein, but affected other adherence properties and biofilm formation. Deletion of the amyloid-forming region (Δ325–331) did not affect interaction of Als3 with SspB adhesin, suggesting this interaction was amyloid-independent. These findings highlighted the essential function of the N-terminal domain of Als3 in mediating the interaction of with , and suggested that amyloid formation is not essential for the inter-kingdom interaction.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.083378-0
2015-01-01
2019-09-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/1/18.html?itemId=/content/journal/micro/10.1099/mic.0.083378-0&mimeType=html&fmt=ahah

References

  1. Alsteens D., Garcia M. C., Lipke P. N., Dufrêne Y. F.. ( 2010;). Force-induced formation and propagation of adhesion nanodomains in living fungal cells. . Proc Natl Acad Sci U S A 107:, 20744–20749. [CrossRef][PubMed]
    [Google Scholar]
  2. Bamford C. V., d’Mello A., Nobbs A. H., Dutton L. C., Vickerman M. M., Jenkinson H. F.. ( 2009;). Streptococcus gordonii modulates Candida albicans biofilm formation through intergeneric communication. . Infect Immun 77:, 3696–3704. [CrossRef][PubMed]
    [Google Scholar]
  3. Beaussart A., Alsteens D., El-Kirat-Chatel S., Lipke P. N., Kucharíková S., Van Dijck P., Dufrêne Y. F.. ( 2012;). Single-molecule imaging and functional analysis of Als adhesins and mannans during Candida albicans morphogenesis. . ACS Nano 6:, 10950–10964.[PubMed]
    [Google Scholar]
  4. Brachmann C. B., Davies A., Cost G. J., Caputo E., Li J., Hieter P., Boeke J. D.. ( 1998;). Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. . Yeast 14:, 115–132. [CrossRef][PubMed]
    [Google Scholar]
  5. Cannon R. D., Chaffin W. L.. ( 1999;). Oral colonization by Candida albicans. . Crit Rev Oral Biol Med 10:, 359–383. [CrossRef][PubMed]
    [Google Scholar]
  6. Carlson E., Johnson G.. ( 1985;). Protection by Candida albicans of Staphylococcus aureus in the establishment of dual infection in mice. . Infect Immun 50:, 655–659.[PubMed]
    [Google Scholar]
  7. Chan C. X., Lipke P. N.. ( 2014;). Role of force-sensitive amyloid-like interactions in fungal catch bonding and biofilms. . Eukaryot Cell 13:, 1136–1142. [CrossRef][PubMed]
    [Google Scholar]
  8. Diaz P. I., Xie Z., Sobue T., Thompson A., Biyikoglu B., Ricker A., Ikonomou L., Dongari-Bagtzoglou A.. ( 2012;). Synergistic interaction between Candida albicans and commensal oral streptococci in a novel in vitro mucosal model. . Infect Immun 80:, 620–632. [CrossRef][PubMed]
    [Google Scholar]
  9. Dutton L. C., Nobbs A. H., Jepson K., Jepson M. A., Vickerman M. M., Aqeel Alawfi S., Munro C. A., Lamont R. J., Jenkinson H. F.. ( 2014;). O-mannosylation in Candida albicans enables development of interkingdom biofilm communities. . MBio 5:, e00911-14. [CrossRef][PubMed]
    [Google Scholar]
  10. Frandsen E. V., Pedrazzoli V., Kilian M.. ( 1991;). Ecology of viridans streptococci in the oral cavity and pharynx. . Oral Microbiol Immunol 6:, 129–133. [CrossRef][PubMed]
    [Google Scholar]
  11. Frank A. T., Ramsook C. B., Otoo H. N., Tan C., Soybelman G., Rauceo J. M., Gaur N. K., Klotz S. A., Lipke P. N.. ( 2010;). Structure and function of glycosylated tandem repeats from Candida albicans Als adhesins. . Eukaryot Cell 9:, 405–414. [CrossRef][PubMed]
    [Google Scholar]
  12. Fu Y., Rieg G., Fonzi W. A., Belanger P. H., Edwards J. E. Jr, Filler S. G.. ( 1998;). Expression of the Candida albicans gene ALS1 in Saccharomyces cerevisiae induces adherence to endothelial and epithelial cells. . Infect Immun 66:, 1783–1786.[PubMed]
    [Google Scholar]
  13. Fu Y., Phan Q. T., Luo G., Solis N. V., Liu Y., Cormack B. P., Edwards J. E. Jr, Ibrahim A. S., Filler S. G.. ( 2013;). Investigation of the function of Candida albicans Als3 by heterologous expression in Candida glabrata. . Infect Immun 81:, 2528–2535. [CrossRef][PubMed]
    [Google Scholar]
  14. Gaddy J. A., Tomaras A. P., Actis L. A.. ( 2009;). The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. . Infect Immun 77:, 3150–3160. [CrossRef][PubMed]
    [Google Scholar]
  15. Garcia M. C., Lee J. T., Ramsook C. B., Alsteens D., Dufrêne Y. F., Lipke P. N.. ( 2011;). A role for amyloid in cell aggregation and biofilm formation. . PLoS ONE 6:, e17632. [CrossRef][PubMed]
    [Google Scholar]
  16. Gaur N. K., Klotz S. A.. ( 1997;). Expression, cloning, and characterization of a Candida albicans gene, ALA1, that confers adherence properties upon Saccharomyces cerevisiae for extracellular matrix proteins. . Infect Immun 65:, 5289–5294.[PubMed]
    [Google Scholar]
  17. Gillum A. M., Tsay E. Y., Kirsch D. R.. ( 1984;). Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. . Mol Gen Genet 198:, 179–182. [CrossRef][PubMed]
    [Google Scholar]
  18. Green C. B., Zhao X., Yeater K. M., Hoyer L. L.. ( 2005;). Construction and real-time RT-PCR validation of Candida albicans PALS-GFP reporter strains and their use in flow cytometry analysis of ALS gene expression in budding and filamenting cells. . Microbiology 151:, 1051–1060. [CrossRef][PubMed]
    [Google Scholar]
  19. Grimaudo N. J., Nesbitt W. E.. ( 1997;). Coaggregation of Candida albicans with oral Fusobacterium species. . Oral Microbiol Immunol 12:, 168–173. [CrossRef][PubMed]
    [Google Scholar]
  20. Grimaudo N. J., Nesbitt W. E., Clark W. B.. ( 1996;). Coaggregation of Candida albicans with oral Actinomyces species. . Oral Microbiol Immunol 11:, 59–61. [CrossRef][PubMed]
    [Google Scholar]
  21. Harriott M. M., Noverr M. C.. ( 2009;). Candida albicans and Staphylococcus aureus form polymicrobial biofilms: effects on antimicrobial resistance. . Antimicrob Agents Chemother 53:, 3914–3922. [CrossRef][PubMed]
    [Google Scholar]
  22. Hawser S. P., Douglas L. J.. ( 1994;). Biofilm formation by Candida species on the surface of catheter materials in vitro. . Infect Immun 62:, 915–921.[PubMed]
    [Google Scholar]
  23. Hogan D. A., Kolter R.. ( 2002;). PseudomonasCandida interactions: an ecological role for virulence factors. . Science 296:, 2229–2232. [CrossRef][PubMed]
    [Google Scholar]
  24. Holcombe L. J., McAlester G., Munro C. A., Enjalbert B., Brown A. J. P., Gow N. A. R., Ding C., Butler G., O’Gara F., Morrissey J. P.. ( 2010;). Pseudomonas aeruginosa secreted factors impair biofilm development in Candida albicans. . Microbiology 156:, 1476–1486. [CrossRef][PubMed]
    [Google Scholar]
  25. Holmes A. R., Gilbert C., Wells J. M., Jenkinson H. F.. ( 1998;). Binding properties of Streptococcus gordonii SspA and SspB (antigen I/II family) polypeptides expressed on the cell surface of Lactococcus lactis MG1363. . Infect Immun 66:, 4633–4639.[PubMed]
    [Google Scholar]
  26. Hoyer L. L., Payne T. L., Bell M., Myers A. M., Scherer S.. ( 1998;). Candida albicans ALS3 and insights into the nature of the ALS gene family. . Curr Genet 33:, 451–459. [CrossRef][PubMed]
    [Google Scholar]
  27. Jakubovics N. S., Strömberg N., van Dolleweerd C. J., Kelly C. G., Jenkinson H. F.. ( 2005;). Differential binding specificities of oral streptococcal antigen I/II family adhesins for human or bacterial ligands. . Mol Microbiol 55:, 1591–1605. [CrossRef][PubMed]
    [Google Scholar]
  28. Jenkinson H. F., Douglas L. J.. ( 2002;). Interactions between Candida species and bacteria in mixed infections. . In Polymicrobial Diseases, pp. 357–373. Edited by Brogden K. A., Guthmiller J. M... Washington, DC:: American Society for Microbiology;. [CrossRef]
    [Google Scholar]
  29. Jenkinson H. F., Lala H. C., Shepherd M. G.. ( 1990;). Coaggregation of Streptococcus sanguis and other streptococci with Candida albicans. . Infect Immun 58:, 1429–1436.[PubMed]
    [Google Scholar]
  30. Klotz S. A., Drutz D. J., Zajic J. E.. ( 1985;). Factors governing adherence of Candida species to plastic surfaces. . Infect Immun 50:, 97–101.[PubMed]
    [Google Scholar]
  31. Lin J., Oh S. H., Jones R., Garnett J. A., Salgado P. S., Rusnakova S., Matthews S. J., Hoyer L. L., Cota E.. ( 2014;). The peptide-binding cavity is essential for Als3-mediated adhesion of Candida albicans to human cells. . J Biol Chem 289:, 18401–18412. [CrossRef][PubMed]
    [Google Scholar]
  32. Liu Y., Filler S. G.. ( 2011;). Candida albicans Als3, a multifunctional adhesin and invasin. . Eukaryot Cell 10:, 168–173. [CrossRef][PubMed]
    [Google Scholar]
  33. Loza L., Fu Y., Ibrahim A. S., Sheppard D. C., Filler S. G., Edwards J. E. Jr. ( 2004;). Functional analysis of the Candida albicans ALS1 gene product. . Yeast 21:, 473–482. [CrossRef][PubMed]
    [Google Scholar]
  34. Minagi S., Miyake Y., Inagaki K., Tsuru H., Suginaka H.. ( 1985;). Hydrophobic interaction in Candida albicans and Candida tropicalis adherence to various denture base resin materials. . Infect Immun 47:, 11–14.[PubMed]
    [Google Scholar]
  35. Misumi Y., Ueda M., Obayashi K., Jono H., Yamashita T., Ando Y.. ( 2012;). Interaction between amyloid fibril formation and extracellular matrix in the proceedings of VIIIth International Symposium on Familial Amyloidotic Polyneuropathy. . Amyloid 19: (Suppl 1), 8–10. [CrossRef][PubMed]
    [Google Scholar]
  36. Moran C., Grussemeyer C. A., Spalding J. R., Benjamin D. K. Jr, Reed S. D.. ( 2009;). Candida albicans and non-albicans bloodstream infections in adult and pediatric patients: comparison of mortality and costs. . Pediatr Infect Dis J 28:, 433–435. [CrossRef][PubMed]
    [Google Scholar]
  37. Muradashvili N., Tyagi R., Metreveli N., Tyagi S. C., Lominadze D.. ( 2014;). Ablation of MMP9 gene ameliorates paracellular permeability and fibrinogen-amyloid beta complex formation during hyperhomocysteinemia. . J Cereb Blood Flow Metab 34:, 1472–1482. [CrossRef][PubMed]
    [Google Scholar]
  38. Nobbs A. H., Vickerman M. M., Jenkinson H. F.. ( 2010;). Heterologous expression of Candida albicans cell wall-associated adhesins in Saccharomyces cerevisiae reveals differential specificities in adherence and biofilm formation and in binding oral Streptococcus gordonii. . Eukaryot Cell 9:, 1622–1634. [CrossRef][PubMed]
    [Google Scholar]
  39. Nobile C. J., Andes D. R., Nett J. E., Smith F. J., Yue F., Phan Q. T., Edwards J. E. Jr, Filler S. G., Mitchell A. P.. ( 2006;). Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. . PLoS Pathog 2:, e63. [CrossRef][PubMed]
    [Google Scholar]
  40. Nobile C. J., Schneider H. A., Nett J. E., Sheppard D. C., Filler S. G., Andes D. R., Mitchell A. P.. ( 2008;). Complementary adhesin function in C. albicans biofilm formation. . Curr Biol 18:, 1017–1024. [CrossRef][PubMed]
    [Google Scholar]
  41. Nyvad B., Kilian M.. ( 1990;). Comparison of the initial streptococcal microflora on dental enamel in caries-active and in caries-inactive individuals. . Caries Res 24:, 267–272. [CrossRef][PubMed]
    [Google Scholar]
  42. O’Sullivan J. M., Jenkinson H. F., Cannon R. D.. ( 2000;). Adhesion of Candida albicans to oral streptococci is promoted by selective adsorption of salivary proteins to the streptococcal cell surface. . Microbiology 146:, 41–48.[PubMed]
    [Google Scholar]
  43. Oh S.-H., Cheng G., Nuessen J. A., Jajko R., Yeater K. M., Zhao X., Pujol C., Soll D. R., Hoyer L. L.. ( 2005;). Functional specificity of Candida albicans Als3p proteins and clade specificity of ALS3 alleles discriminated by the number of copies of the tandem repeat sequence in the central domain. . Microbiology 151:, 673–681. [CrossRef][PubMed]
    [Google Scholar]
  44. Otoo H. N., Lee K. G., Qiu W., Lipke P. N.. ( 2008;). Candida albicans Als adhesins have conserved amyloid-forming sequences. . Eukaryot Cell 7:, 776–782. [CrossRef][PubMed]
    [Google Scholar]
  45. Peters B. M., Ovchinnikova E. S., Krom B. P., Schlecht L. M., Zhou H., Hoyer L. L., Busscher H. J., van der Mei H. C., Jabra-Rizk M. A., Shirtliff M. E.. ( 2012;). Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p. . Microbiology 158:, 2975–2986. [CrossRef][PubMed]
    [Google Scholar]
  46. Phan Q. T., Fratti R. A., Prasadarao N. V., Edwards J. E. Jr, Filler S. G.. ( 2005;). N-cadherin mediates endocytosis of Candida albicans by endothelial cells. . J Biol Chem 280:, 10455–10461. [CrossRef][PubMed]
    [Google Scholar]
  47. Phan Q. T., Myers C. L., Fu Y., Sheppard D. C., Yeaman M. R., Welch W. H., Ibrahim A. S., Edwards J. E. Jr, Filler S. G.. ( 2007;). Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. . PLoS Biol 5:, e64. [CrossRef][PubMed]
    [Google Scholar]
  48. Phan Q. T., Eng D. K., Mostowy S., Park H., Cossart P., Filler S. G.. ( 2013;). Role of endothelial cell septin 7 in the endocytosis of Candida albicans. . MBio 4:, e00542-e13. [CrossRef][PubMed]
    [Google Scholar]
  49. Rauceo J. M., De Armond R., Otoo H., Kahn P. C., Klotz S. A., Gaur N. K., Lipke P. N.. ( 2006;). Threonine-rich repeats increase fibronectin binding in the Candida albicans adhesin Als5p. . Eukaryot Cell 5:, 1664–1673. [CrossRef][PubMed]
    [Google Scholar]
  50. Salgado P. S., Yan R., Taylor J. D., Burchell L., Jones R., Hoyer L. L., Matthews S. J., Simpson P. J., Cota E.. ( 2011;). Structural basis for the broad specificity to host-cell ligands by the pathogenic fungus Candida albicans. . Proc Natl Acad Sci U S A 108:, 15775–15779. [CrossRef][PubMed]
    [Google Scholar]
  51. Sheppard D. C., Yeaman M. R., Welch W. H., Phan Q. T., Fu Y., Ibrahim A. S., Filler S. G., Zhang M., Waring A. J., Edwards J. E. Jr. ( 2004;). Functional and structural diversity in the Als protein family of Candida albicans. . J Biol Chem 279:, 30480–30489. [CrossRef][PubMed]
    [Google Scholar]
  52. Shirtliff M. E., Peters B. M., Jabra-Rizk M. A.. ( 2009;). Cross-kingdom interactions: Candida albicans and bacteria. . FEMS Microbiol Lett 299:, 1–8. [CrossRef][PubMed]
    [Google Scholar]
  53. Silverman R. J., Nobbs A. H., Vickerman M. M., Barbour M. E., Jenkinson H. F.. ( 2010;). Interaction of Candida albicans cell wall Als3 protein with Streptococcus gordonii SspB adhesin promotes development of mixed-species communities. . Infect Immun 78:, 4644–4652. [CrossRef][PubMed]
    [Google Scholar]
  54. Xu H., Jenkinson H. F., Dongari-Bagtzoglou A.. ( 2014a;). Innocent until proven guilty: mechanisms and roles of StreptococcusCandida interactions in oral health and disease. . Mol Oral Microbiol 29:, 99–116. [CrossRef][PubMed]
    [Google Scholar]
  55. Xu H., Sobue T., Thompson A., Xie Z., Poon K., Ricker A., Cervantes J., Diaz P. I., Dongari-Bagtzoglou A.. ( 2014b;). Streptococcal co-infection augments Candida pathogenicity by amplifying the mucosal inflammatory response. . Cell Microbiol 16:, 214–231. [CrossRef][PubMed]
    [Google Scholar]
  56. Zaoutis T. E., Argon J., Chu J., Berlin J. A., Walsh T. J., Feudtner C.. ( 2005;). The epidemiology and attributable outcomes of candidemia in adults and children hospitalized in the United States: a propensity analysis. . Clin Infect Dis 41:, 1232–1239. [CrossRef][PubMed]
    [Google Scholar]
  57. Zhao X., Oh S. H., Cheng G., Green C. B., Nuessen J. A., Yeater K., Leng R. P., Brown A. J., Hoyer L. L.. ( 2004;). ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesin; functional comparisons between Als3p and Als1p. . Microbiology 150:, 2415–2428. [CrossRef][PubMed]
    [Google Scholar]
  58. Zhao X., Daniels K. J., Oh S. H., Green C. B., Yeater K. M., Soll D. R., Hoyer L. L.. ( 2006;). Candida albicans Als3p is required for wild-type biofilm formation on silicone elastomer surfaces. . Microbiology 152:, 2287–2299. [CrossRef][PubMed]
    [Google Scholar]
  59. Zupancic M. L., Frieman M., Smith D., Alvarez R. A., Cummings R. D., Cormack B. P.. ( 2008;). Glycan microarray analysis of Candida glabrata adhesin ligand specificity. . Mol Microbiol 68:, 547–559. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.083378-0
Loading
/content/journal/micro/10.1099/mic.0.083378-0
Loading

Data & Media loading...

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error