1887

Abstract

There is a growing appreciation that microbiota composition can significantly affect host health and play a role in disease onset and progression. This study assessed the impact of streptozotocin (STZ)-induced type-1-diabetes (T1D) on intestinal microbiota composition and diversity in Sprague–Dawley rats, compared with healthy controls over time. T1D was induced by injection of a single dose (60 mg STZ kg) of STZ, administered via the intraperitoneal cavity. Total DNA was isolated from faecal pellets at weeks 0 (pre-STZ injection), 1, 2 and 4 and from caecal content at week 5 from both healthy and T1D groups. High-throughput 16S rRNA sequencing was employed to investigate intestinal microbiota composition. The data revealed that although intestinal microbiota composition between the groups was similar at week 0, a dramatic impact of T1D development on the microbiota was apparent post-STZ injection and for up to 5 weeks. Most notably, T1D onset was associated with a shift in the  :  ratio (<0.05), while at the genus level, increased proportions of lactic acid producing bacteria such as and were associated with the later stages of T1D progression (<0.05). Coincidently, T1D increased caecal lactate levels (<0.05). Microbial diversity was also reduced following T1D (<0.05). Principle co-ordinate analyses demonstrated temporal clustering in T1D and control groups with distinct separation between groups. The results provide a comprehensive account of how T1D is associated with an altered intestinal microbiota composition and reduced microbial diversity over time.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.082610-0
2015-01-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/1/182.html?itemId=/content/journal/micro/10.1099/mic.0.082610-0&mimeType=html&fmt=ahah

References

  1. Adolphe A. B., Glasofer E. D., Troetel W. M., Ziegenfuss J., Stambaugh J. E., Weiss A. J., Manthei R. W.. ( 1975;). Fate of streptozotocin (NSC-85998)in patients with advanced cancer. . Cancer Chemother Rep 59:, 547–556.[PubMed]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  3. Atkinson M. A., Chervonsky A.. ( 2012;). Does the gut microbiota have a role in type 1 diabetes? Early evidence from humans and animal models of the disease. . Diabetologia 55:, 2868–2877. [CrossRef][PubMed]
    [Google Scholar]
  4. Barcelo A., Claustre J., Moro F., Chayvialle J. A., Cuber J. C., Plaisancié P.. ( 2000;). Mucin secretion is modulated by luminal factors in the isolated vascularly perfused rat colon. . Gut 46:, 218–224. [CrossRef][PubMed]
    [Google Scholar]
  5. Bellavia M., Tomasello G., Romeo M., Damiani P., Lo Monte A. I., Lozio L., Campanella C., Marino Gammazza A., Rappa F.. & other authors ( 2013;). Gut microbiota imbalance and chaperoning system malfunction are central to ulcerative colitis pathogenesis and can be counteracted with specifically designed probiotics: a working hypothesis. . Med Microbiol Immunol 202:, 393–406. [CrossRef][PubMed]
    [Google Scholar]
  6. Boerner B. P., Sarvetnick N. E.. ( 2011;). Type 1 diabetes: role of intestinal microbiome in humans and mice. . Ann N Y Acad Sci 1243:, 103–118. [CrossRef][PubMed]
    [Google Scholar]
  7. Brown C. T., Davis-Richardson A. G., Giongo A., Gano K. A., Crabb D. B., Mukherjee N., Casella G., Drew J. C., Ilonen J.. & other authors ( 2011;). Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. . PLoS ONE 6:, e25792. [CrossRef][PubMed]
    [Google Scholar]
  8. Brugman S., Klatter F. A., Visser J. T., Wildeboer-Veloo A. C., Harmsen H. J., Rozing J., Bos N. A.. ( 2006;). Antibiotic treatment partially protects against type 1 diabetes in the Bio-Breeding diabetes-prone rat. Is the gut flora involved in the development of type 1 diabetes. ? Diabetologia 49:, 2105–2108. [CrossRef][PubMed]
    [Google Scholar]
  9. Burger-van Paassen N., Vincent A., Puiman P. J., van der Sluis M., Bouma J., Boehm G., van Goudoever J. B., van Seuningen I., Renes I. B.. ( 2009;). The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelial protection. . Biochem J 420:, 211–219. [CrossRef][PubMed]
    [Google Scholar]
  10. Calcinaro F., Dionisi S., Marinaro M., Candeloro P., Bonato V., Marzotti S., Corneli R. B., Ferretti E., Gulino A.. & other authors ( 2005;). Oral probiotic administration induces interleukin-10 production and prevents spontaneous autoimmune diabetes in the non-obese diabetic mouse. . Diabetologia 48:, 1565–1575. [CrossRef][PubMed]
    [Google Scholar]
  11. Caporaso J. G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F. D., Costello E. K., Fierer N., Peña A. G., Goodrich J. K.. & other authors ( 2010;). qiime allows analysis of high-throughput community sequencing data. . Nat Methods 7:, 335–336. [CrossRef][PubMed]
    [Google Scholar]
  12. Cardwell C. R., Stene L. C., Joner G., Cinek O., Svensson J., Goldacre M. J., Parslow R. C., Pozzilli P., Brigis G.. & other authors ( 2008;). Caesarean section is associated with an increased risk of childhood-onset type 1 diabetes mellitus: a meta-analysis of observational studies. . Diabetologia 51:, 726–735. [CrossRef][PubMed]
    [Google Scholar]
  13. Carratù R., Secondulfo M., de Magistris L., Iafusco D., Urio A., Carbone M. G., Pontoni G., Cartenì M., Prisco F.. ( 1999;). Altered intestinal permeability to mannitol in diabetes mellitus type I. . J Pediatr Gastroenterol Nutr 28:, 264–269. [CrossRef][PubMed]
    [Google Scholar]
  14. Chen V. B., Davis I. W., Richardson D. C.. ( 2009;). king (Kinemage, Next Generation): a versatile interactive molecular and scientific visualization program. . Protein Sci 18:, 2403–2409. [CrossRef][PubMed]
    [Google Scholar]
  15. de Goffau M. C., Luopajärvi K., Knip M., Ilonen J., Ruohtula T., Härkönen T., Orivuori L., Hakala S., Welling G. W.. & other authors ( 2013;). Fecal microbiota composition differs between children with β-cell autoimmunity and those without. . Diabetes 62:, 1238–1244. [CrossRef][PubMed]
    [Google Scholar]
  16. Dominguez-Bello M. G., Costello E. K., Contreras M., Magris M., Hidalgo G., Fierer N., Knight R.. ( 2010;). Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. . Proc Natl Acad Sci U S A 107:, 11971–11975. [CrossRef][PubMed]
    [Google Scholar]
  17. Duffy L. C.. ( 2000;). Interactions mediating bacterial translocation in the immature intestine. . J Nutr 130: (Suppl), 432S–436S.[PubMed]
    [Google Scholar]
  18. Ehehalt S., Dietz K., Willasch A. M., Neu A..Baden-Württemberg Diabetes Incidence Registry (DIARY) Group ( 2010;). Epidemiological perspectives on type 1 diabetes in childhood and adolescence in Germany: 20 years of the Baden-Württemberg Diabetes Incidence Registry (DIARY). . Diabetes Care 33:, 338–340. [CrossRef][PubMed]
    [Google Scholar]
  19. Finnie I. A., Dwarakanath A. D., Taylor B. A., Rhodes J. M.. ( 1995;). Colonic mucin synthesis is increased by sodium butyrate. . Gut 36:, 93–99. [CrossRef][PubMed]
    [Google Scholar]
  20. Gibson G. R., Willems A., Reading S., Collins M. D.. ( 1996;). Fermentation of non-digestible oligosaccharides by human colonic bacteria. . Proc Nutr Soc 55:, 899–912. [CrossRef][PubMed]
    [Google Scholar]
  21. Giongo A., Gano K. A., Crabb D. B., Mukherjee N., Novelo L. L., Casella G., Drew J. C., Ilonen J., Knip M.. & other authors ( 2011;). Toward defining the autoimmune microbiome for type 1 diabetes. . ISME J 5:, 82–91. [CrossRef][PubMed]
    [Google Scholar]
  22. Greenblum S., Turnbaugh P. J., Borenstein E.. ( 2012;). Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. . Proc Natl Acad Sci U S A 109:, 594–599. [CrossRef][PubMed]
    [Google Scholar]
  23. Haas B. J., Gevers D., Earl A. M., Feldgarden M., Ward D. V., Giannoukos G., Ciulla D., Tabbaa D., Highlander S. K.. & other authors ( 2011;). Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. . Genome Res 21:, 494–504. [CrossRef][PubMed]
    [Google Scholar]
  24. Hamer H. M., Jonkers D., Venema K., Vanhoutvin S., Troost F. J., Brummer R. J.. ( 2008;). Review article: the role of butyrate on colonic function. . Aliment Pharmacol Ther 27:, 104–119. [CrossRef][PubMed]
    [Google Scholar]
  25. Huson D. H., Auch A. F., Qi J., Schuster S. C.. ( 2007;). megan analysis of metagenomic data. . Genome Res 17:, 377–386. [CrossRef][PubMed]
    [Google Scholar]
  26. Karunanayake E. H., Hearse D. J., Mellows G.. ( 1976;). Streptozotocin: its excretion and metabolism in the rat. . Diabetologia 12:, 483–488. [CrossRef][PubMed]
    [Google Scholar]
  27. King C., Sarvetnick N.. ( 2011;). The incidence of type-1 diabetes in NOD mice is modulated by restricted flora not germ-free conditions. . PLoS ONE 6:, e17049. [CrossRef][PubMed]
    [Google Scholar]
  28. Kleessen B., Blaut M.. ( 2005;). Modulation of gut mucosal biofilms. . Br J Nutr 93: (Suppl. 1), S35–S40. [CrossRef][PubMed]
    [Google Scholar]
  29. Kleessen B., Hartmann L., Blaut M.. ( 2003;). Fructans in the diet cause alterations of intestinal mucosal architecture, released mucins and mucosa-associated bifidobacteria in gnotobiotic rats. . Br J Nutr 89:, 597–606. [CrossRef][PubMed]
    [Google Scholar]
  30. Klimesova K., Kverka M., Zakostelska Z., Hudcovic T., Hrncir T., Stepankova R., Rossmann P., Ridl J., Kostovcik M.. & other authors ( 2013;). Altered gut microbiota promotes colitis-associated cancer in IL-1 receptor-associated kinase M-deficient mice. . Inflamm Bowel Dis 19:, 1266–1277. [CrossRef][PubMed]
    [Google Scholar]
  31. Knip M., Virtanen S. M., Becker D., Dupré J., Krischer J. P., Åkerblom H. K..TRIGR Study Group ( 2011;). Early feeding and risk of type 1 diabetes: experiences from the Trial to Reduce Insulin-dependent diabetes mellitus in the Genetically at Risk (TRIGR). . Am J Clin Nutr 94: (Suppl.), 1814S–1820S. [CrossRef][PubMed]
    [Google Scholar]
  32. Kruskal W. H., Wallis W. A.. ( 1952;). Use of ranks in one-criterion variance analysis. . J Am Stat Assoc 47:, 583–621. [CrossRef]
    [Google Scholar]
  33. Kuitunen M., Saukkonen T., Ilonen J., Akerblom H. K., Savilahti E.. ( 2002;). Intestinal permeability to mannitol and lactulose in children with type 1 diabetes with the HLA-DQB1*02 allele. . Autoimmunity 35:, 365–368. [CrossRef][PubMed]
    [Google Scholar]
  34. Lenzen S.. ( 2008;). The mechanisms of alloxan- and streptozotocin-induced diabetes. . Diabetologia 51:, 216–226. [CrossRef][PubMed]
    [Google Scholar]
  35. Ley R. E., Bäckhed F., Turnbaugh P., Lozupone C. A., Knight R. D., Gordon J. I.. ( 2005;). Obesity alters gut microbial ecology. . Proc Natl Acad Sci U S A 102:, 11070–11075. [CrossRef][PubMed]
    [Google Scholar]
  36. Ley R. E., Turnbaugh P. J., Klein S., Gordon J. I.. ( 2006;). Microbial ecology: human gut microbes associated with obesity. . Nature 444:, 1022–1023. [CrossRef][PubMed]
    [Google Scholar]
  37. Liévin V., Peiffer I., Hudault S., Rochat F., Brassart D., Neeser J. R., Servin A. L.. ( 2000;). Bifidobacterium strains from resident infant human gastrointestinal microflora exert antimicrobial activity. . Gut 47:, 646–652. [CrossRef][PubMed]
    [Google Scholar]
  38. Liou A. P., Paziuk M., Luevano J. M. Jr, Machineni S., Turnbaugh P. J., Kaplan L. M.. ( 2013;). Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. . Sci Transl Med 5:, 178ra41. [CrossRef][PubMed]
    [Google Scholar]
  39. Louis P., Flint H. J.. ( 2009;). Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. . FEMS Microbiol Lett 294:, 1–8. [CrossRef][PubMed]
    [Google Scholar]
  40. Manichanh C., Rigottier-Gois L., Bonnaud E., Gloux K., Pelletier E., Frangeul L., Nalin R., Jarrin C., Chardon P.. & other authors ( 2006;). Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. . Gut 55:, 205–211. [CrossRef][PubMed]
    [Google Scholar]
  41. Murphy E. F., Cotter P. D., Healy S., Marques T. M., O’Sullivan O., Fouhy F., Clarke S. F., O’Toole P. W., Quigley E. M.. & other authors ( 2010;). Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. . Gut 59:, 1635–1642. [CrossRef][PubMed]
    [Google Scholar]
  42. Murri M., Leiva I., Gomez-Zumaquero J. M., Tinahones F. J., Cardona F., Soriguer F., Queipo-Ortuño M. I.. ( 2013;). Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. . BMC Med 11:, 46. [CrossRef][PubMed]
    [Google Scholar]
  43. Noble J. A., Erlich H. A.. ( 2012;). Genetics of type 1 diabetes. . Cold Spring Harb Perspect Med 2:, a007732. [CrossRef][PubMed]
    [Google Scholar]
  44. Notkins A. L., Lernmark A.. ( 2001;). Autoimmune type 1 diabetes: resolved and unresolved issues. . J Clin Invest 108:, 1247–1252. [CrossRef][PubMed]
    [Google Scholar]
  45. O’Toole P. W., Claesson M. J.. ( 2010;). Gut microbiota: changes throughout the lifespan from infancy to elderly. . Int Dairy J 20:, 281–291. [CrossRef]
    [Google Scholar]
  46. Patterson C. C., Dahlquist G., Soltész G., Green A..EURODIAB ACE Study Group. Europe and Diabetes ( 2001;). Is childhood-onset type I diabetes a wealth-related disease? An ecological analysis of European incidence rates. . Diabetologia 44: (Suppl. 3), B9–B16. [CrossRef][PubMed]
    [Google Scholar]
  47. Peng L., He Z., Chen W., Holzman I. R., Lin J.. ( 2007;). Effects of butyrate on intestinal barrier function in a Caco-2 cell monolayer model of intestinal barrier. . Pediatr Res 61:, 37–41. [CrossRef][PubMed]
    [Google Scholar]
  48. Peng L., Li Z. R., Green R. S., Holzman I. R., Lin J.. ( 2009;). Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. . J Nutr 139:, 1619–1625. [CrossRef][PubMed]
    [Google Scholar]
  49. Price M. N., Dehal P. S., Arkin A. P.. ( 2010;). FastTree 2–approximately maximum-likelihood trees for large alignments. . PLoS ONE 5:, e9490. [CrossRef][PubMed]
    [Google Scholar]
  50. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O.. ( 2007;). silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. . Nucleic Acids Res 35:, 7188–7196. [CrossRef][PubMed]
    [Google Scholar]
  51. Pryde S. E., Duncan S. H., Hold G. L., Stewart C. S., Flint H. J.. ( 2002;). The microbiology of butyrate formation in the human colon. . FEMS Microbiol Lett 217:, 133–139. [CrossRef][PubMed]
    [Google Scholar]
  52. Rea M. C., Dobson A., O’Sullivan O., Crispie F., Fouhy F., Cotter P. D., Shanahan F., Kiely B., Hill C., Ross R. P.. ( 2011;). Effect of broad- and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon. . Proc Natl Acad Sci U S A 108: (Suppl. 1), 4639–4644. [CrossRef][PubMed]
    [Google Scholar]
  53. Roesch L. F., Lorca G. L., Casella G., Giongo A., Naranjo A., Pionzio A. M., Li N., Mai V., Wasserfall C. H.. & other authors ( 2009;). Culture-independent identification of gut bacteria correlated with the onset of diabetes in a rat model. . ISME J 3:, 536–548. [CrossRef][PubMed]
    [Google Scholar]
  54. Romond M. B., Colavizza M., Mullié C., Kalach N., Kremp O., Mielcarek C., Izard D.. ( 2008;). Does the intestinal bifidobacterial colonisation affect bacterial translocation. ? Anaerobe 14:, 43–48. [CrossRef][PubMed]
    [Google Scholar]
  55. Sapone A., de Magistris L., Pietzak M., Clemente M. G., Tripathi A., Cucca F., Lampis R., Kryszak D., Cartenì M.. & other authors ( 2006;). Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives. . Diabetes 55:, 1443–1449. [CrossRef][PubMed]
    [Google Scholar]
  56. Sartor R. B.. ( 2008;). Microbial influences in inflammatory bowel diseases. . Gastroenterology 134:, 577–594. [CrossRef][PubMed]
    [Google Scholar]
  57. Sartor R. B., Mazmanian S. K.. ( 2012;). Intestinal microbes in inflammatory bowel diseases. . Am J Gastroenterol Suppl 1:, 15–21. [CrossRef]
    [Google Scholar]
  58. Schein P., Kahn R., Gorden P., Wells S., Devita V. T.. ( 1973;). Streptozotocin for malignant insulinomas and carcinoid tumor. Report of eight cases and review of the literature. . Arch Intern Med 132:, 555–561. [CrossRef][PubMed]
    [Google Scholar]
  59. Shimotoyodome A., Meguro S., Hase T., Tokimitsu I., Sakata T.. ( 2000;). Short chain fatty acids but not lactate or succinate stimulate mucus release in the rat colon. . Comp Biochem Physiol A Mol Integr Physiol 125:, 525–531. [CrossRef][PubMed]
    [Google Scholar]
  60. Stecher B., Hardt W. D.. ( 2008;). The role of microbiota in infectious disease. . Trends Microbiol 16:, 107–114. [CrossRef][PubMed]
    [Google Scholar]
  61. Turnbaugh P. J., Ley R. E., Mahowald M. A., Magrini V., Mardis E. R., Gordon J. I.. ( 2006;). An obesity-associated gut microbiome with increased capacity for energy harvest. . Nature 444:, 1027–1031. [CrossRef][PubMed]
    [Google Scholar]
  62. Turnbaugh P. J., Hamady M., Yatsunenko T., Cantarel B. L., Duncan A., Ley R. E., Sogin M. L., Jones W. J., Roe B. A.. & other authors ( 2009;). A core gut microbiome in obese and lean twins. . Nature 457:, 480–484. [CrossRef][PubMed]
    [Google Scholar]
  63. Urich T., Lanzén A., Qi J., Huson D. H., Schleper C., Schuster S. C.. ( 2008;). Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. . PLoS ONE 3:, e2527. [CrossRef][PubMed]
    [Google Scholar]
  64. Vaarala O., Atkinson M. A., Neu J.. ( 2008;). The “perfect storm” for type 1 diabetes: the complex interplay between intestinal microbiota, gut permeability, and mucosal immunity. . Diabetes 57:, 2555–2562. [CrossRef][PubMed]
    [Google Scholar]
  65. Vavra J. J., Deboer C., Dietz A., Hanka L. J., Sokolski W. T.. ( 1959-1960;). Streptozotocin, a new antibacterial antibiotic. . Antibiot Annu 7:, 230–235.[PubMed]
    [Google Scholar]
  66. Wall R., Marques T. M., O’Sullivan O., Ross R. P., Shanahan F., Quigley E. M., Dinan T. G., Kiely B., Fitzgerald G. F.. & other authors ( 2012;). Contrasting effects of Bifidobacterium breve NCIMB 702258 and Bifidobacterium breve DPC 6330 on the composition of murine brain fatty acids and gut microbiota. . Am J Clin Nutr 95:, 1278–1287. [CrossRef][PubMed]
    [Google Scholar]
  67. Wang Z. T., Yao Y. M., Xiao G. X., Sheng Z. Y.. ( 2004;). Risk factors of development of gut-derived bacterial translocation in thermally injured rats. . World J Gastroenterol 10:, 1619–1624.[PubMed]
    [Google Scholar]
  68. Wu K. K., Huan Y.. ( 2008;). Streptozotocin-induced diabetic models in mice and rats. . In Current Protocols in Pharmacology 5.47.1–5.47.14. Edited by Enna S. J., Williams M., Kenakin T., McGonigle P., Ruggeri B... New York:: Wiley;. [CrossRef]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.082610-0
Loading
/content/journal/micro/10.1099/mic.0.082610-0
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Supplementary Data



PDF

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error