1887

Abstract

A species (designated Ti-13) was isolated as an endophyte from . The fungus produces a spectrum of volatile organic compounds (VOCs) that includes ethanol, acetaldehyde and 1,8-cineole as major components. Initial observations of the fungal isolate suggested that reversible attenuation of the organism via removal from the host and successive transfers in pure culture resulted in a 50 % decrease in cineole production unrelated to an overall alteration in fungal growth. A compound (CPM) was obtained from (silver birch) that increases the production of 1,8-cineole by an attenuated Ti-13 strain to its original level, as measured by a novel bioassay method employing a 1,8-cineole-sensitive fungus (). The host plant produces similar compounds possessing this activity. Bioactivity assays with structurally similar compounds such as ferulic acid and gallic acid suggested that the CPM does not act as a simple precursor to the biosynthesis of 1,8-cineole. NMR spectroscopy and HPLC-ES-MS indicated that the CPM is a -substituted benzene with alkyl and carboxyl substituents. The VOCs of Ti-13, especially 1,8-cineole, have potential applications in the industrial, fuel and medical fields.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.079756-0
2014-08-01
2019-09-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/8/1772.html?itemId=/content/journal/micro/10.1099/mic.0.079756-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  2. Babu G. D. K., Singh B.. ( 2009;). Simulation of Eucalyptus cinerea oil distillation: a study on optimization of 1, 8-cineole production. . Biochem Eng J 44:, 226–231. [CrossRef]
    [Google Scholar]
  3. Barton A. F., Tjandra J.. ( 1989;). Eucalyptus oil as a cosolvent in water–ethanol–gasoline mixtures. . Fuel 68:, 11–17. [CrossRef]
    [Google Scholar]
  4. Booth E., Strobel G., Knighton B., Sears J., Geary B., Avci R.. ( 2011;). A rapid column technique for trapping and collecting of volatile fungal hydrocarbons and hydrocarbon derivatives. . Biotechnol Lett 33:, 1963–1972. [CrossRef][PubMed]
    [Google Scholar]
  5. Brakhage A. A.. ( 2013;). Regulation of fungal secondary metabolism. . Nat Rev Microbiol 11:, 21–32. [CrossRef][PubMed]
    [Google Scholar]
  6. Castillo U., Harper J. K., Strobel G. A., Sears J., Alesi K., Ford E., Lin J., Hunter M., Maranta M.. & other authors ( 2003;). Kakadumycins, novel antibiotics from Streptomyces sp. NRRL 30566, an endophyte of Grevillea pteridifolia. . FEMS Microbiol Lett 224:, 183–190. [CrossRef][PubMed]
    [Google Scholar]
  7. Clay K.. ( 1996;). Interactions among fungal endophytes, grasses and herbivores. . Res Popul Ecol (Kyoto) 38:, 191–201. [CrossRef]
    [Google Scholar]
  8. Ezra D., Hess W. M., Strobel G. A.. ( 2004a;). New endophytic isolates of Muscodor albus, a volatile-antibiotic-producing fungus. . Microbiology 150:, 4023–4031. [CrossRef][PubMed]
    [Google Scholar]
  9. Ezra D., Jasper J., Rogers T., Knighton B., Grimsrud E., Strobel G.. ( 2004b;). Proton transfer reaction-mass spectrometry as a technique to measure volatile emissions of Muscodor albus. . Plant Sci 166:, 1471–1477. [CrossRef]
    [Google Scholar]
  10. Ezra D., Castillo U. F., Strobel G. A., Hess W. M., Porter H., Jensen J. B., Condron M. A., Teplow D. B., Sears J.. & other authors ( 2004c;). Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU-2110) endophytic on Monstera sp.. Microbiology 150:, 785–793. [CrossRef][PubMed]
    [Google Scholar]
  11. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  12. Fleetwood D. J., Scott B., Lane G. A., Tanaka A., Johnson R. D.. ( 2007;). A complex ergovaline gene cluster in epichloe endophytes of grasses. . Appl Environ Microbiol 73:, 2571–2579. [CrossRef][PubMed]
    [Google Scholar]
  13. Gladden J. M.. ( 2013;). Tailoring Next-Generation Biofuels and their Combustion in Next-Generation Engines. Livermore, CA:: Sandia National Laboratories;.
    [Google Scholar]
  14. Hanlin R.. ( 1998;). Illustrated Genera of Ascomycetes, vol. I. St Paul, MN:: APS Press;.
    [Google Scholar]
  15. Kusari S., Hertweck C., Spiteller M.. ( 2012;). Chemical ecology of endophytic fungi: origins of secondary metabolites. . Chem Biol 19:, 792–798. [CrossRef][PubMed]
    [Google Scholar]
  16. Li J. Y., Harper J. K., Grant D. M., Tombe B. O., Bashyal B., Hess W. M., Strobel G. A.. ( 2001;). Ambuic acid, a highly functionalized cyclohexenone with antifungal activity from Pestalotiopsis spp. and Monochaetia sp.. Phytochemistry 56:, 463–468. [CrossRef][PubMed]
    [Google Scholar]
  17. Malinowski D. P., Alloush G. A., Belesky D. P.. ( 2000;). Leaf endophyte Neotyphodium coenophialum modifies mineral uptake in tall fescue. . Plant Soil 227:, 115–126. [CrossRef]
    [Google Scholar]
  18. Mends M., Yu E., Strobel G. A., Riyaz-Ul-Hassan S., Booth E., Geary B., Sears J., Taatjes C. A., Hadi M. Z.. ( 2012;). An endophytic Nodulisporium sp. producing volatile organic compounds having bioactivity and fuel potential. . J Petrol Environ Biotechnol 3:, 117. doi: 10.4172/2157-7463.1000117.
    [Google Scholar]
  19. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  20. Silverstein R. M., Bassler G. C., Morrill T. C.. ( 1974;). Spectrometric Identification of Organic Compounds. New York:: Wiley;.
    [Google Scholar]
  21. Stierle A., Strobel G., Stierle D.. ( 1993;). Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. . Science 260:, 214–216. [CrossRef][PubMed]
    [Google Scholar]
  22. Strobel G. A.. ( 2014;). Methods of discovery and techniques to study endophytic fungi producing fuel-related hydrocarbons. . Nat Prod Rep 31:, 259–272. [CrossRef][PubMed]
    [Google Scholar]
  23. Strobel G., Daisy B.. ( 2003;). Bioprospecting for microbial endophytes and their natural products. . Microbiol Mol Biol Rev 67:, 491–502. [CrossRef][PubMed]
    [Google Scholar]
  24. Strobel G. A., Knighton B., Kluck K., Ren Y., Livinghouse T., Griffin M., Spakowicz D., Sears J.. ( 2008;). The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). . Microbiology 154:, 3319–3328. [CrossRef][PubMed]
    [Google Scholar]
  25. Sugito K., Takeda S.. ( 1981;). Fuel composition. . US Patent 4,297,109.
  26. Takeda S., Hoki M.. ( 1982;). Study of eucalyptus oil and its application to spark ignition engine (IV). . Bull Faculty Agric Mie Univ 64:, 55–67.
    [Google Scholar]
  27. Tamilvendhan D., Ilangovan V., Karthikeyan R.. ( 2011;). Optimisation of engine operating parameters for eucalyptus oil mixed diesel fueled DI diesel engine using Taguchi method. . J Eng Appl Sci 6:, 14–22.
    [Google Scholar]
  28. Tamura K., Nei M., Kumar S.. ( 2004;). Prospects for inferring very large phylogenies by using the neighbor-joining method. . Proc Natl Acad Sci U S A 101:, 11030–11035. [CrossRef][PubMed]
    [Google Scholar]
  29. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  30. Tarabet L., Loubar K., Lounici M. S., Hanchi S., Tazerout M.. ( 2012;). Eucalyptus biodiesel as an alternative to diesel fuel: preparation and tests on DI diesel engine. . BioMed Res Int 2012:, 235485. doi: 10.1155/2012/235485.
    [Google Scholar]
  31. Tomsheck A. R., Strobel G. A., Booth E., Geary B., Spakowicz D., Knighton B., Floerchinger C., Sears J., Liarzi O., Ezra D.. ( 2010;). Hypoxylon sp., an endophyte of Persea indica, producing 1,8-cineole and other bioactive volatiles with fuel potential. . Microb Ecol 60:, 903–914. [CrossRef][PubMed]
    [Google Scholar]
  32. Wiemann P., Keller N. P.. ( 2014;). Strategies for mining fungal natural products. . J Ind Microbiol Biotechnol 41:, 301–313. [CrossRef][PubMed]
    [Google Scholar]
  33. Wilson D.. ( 1995;). Endophyte: the evolution of a term, and clarification of its use and definition. . Oikos 73:, 274–276. [CrossRef]
    [Google Scholar]
  34. Zhang D. X., Nagabhyru P., Schardl C. L.. ( 2009;). Regulation of a chemical defense against herbivory produced by symbiotic fungi in grass plants. . Plant Physiol 150:, 1072–1082. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.079756-0
Loading
/content/journal/micro/10.1099/mic.0.079756-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error