1887

Abstract

Excessive Ca or compounds interfering with phosphoinositide cycling have been found to inhibit the growth of the tangerine pathotype of , suggesting a crucial role of Ca homeostasis in this pathotype. The roles of , a phospholipase C-coding gene and , a calcineurin phosphatase-coding gene were investigated. Targeted gene disruption showed that both and were required for vegetative growth, conidial formation and pathogenesis in citrus. Fungal strains lacking or exhibited extremely slow growth and induced small lesions on calamondin leaves. Δ mutants produced fewer conidia, which germinated at slower rates than wild-type. Δ mutants produced abnormal hyphae and failed to produce any mature conidia, but instead produced highly melanized bulbous hyphae with distinct septae. Fluorescence microscopy using Fluo-3 dye as a Ca indicator revealed that the Δ mutant hyphae emitted stronger cytosolic fluorescence, and the Δ mutant hyphae emitted less cytosolic fluorescence, than those of wild-type. Infection assessed on detached calamondin leaves revealed that application of CaCl or neomycin 24 h prior to inoculation provided protection against . These data indicate that a dynamic equilibrium of cellular Ca is critical for developmental and pathological processes of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.077818-0
2014-07-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/7/1453.html?itemId=/content/journal/micro/10.1099/mic.0.077818-0&mimeType=html&fmt=ahah

References

  1. Akimitsu K., Peever T. L., Timmer L. W.. ( 2003;). Molecular, ecological and evolutionary approaches to understanding Alternaria diseases of citrus. . Mol Plant Pathol 4:, 435–446. [CrossRef][PubMed]
    [Google Scholar]
  2. Berridge M. J.. ( 1993;). Inositol trisphosphate and calcium signalling. . Nature 361:, 315–325. [CrossRef][PubMed]
    [Google Scholar]
  3. Berridge M. J., Lipp P., Bootman M. D.. ( 2000;). The versatility and universality of calcium signalling. . Nat Rev Mol Cell Biol 1:, 11–21. [CrossRef][PubMed]
    [Google Scholar]
  4. Blankenship J. R., Wormley F. L., Boyce M. K., Schell W. A., Filler S. G., Perfect J. R., Heitman J.. ( 2003;). Calcineurin is essential for Candida albicans survival in serum and virulence. . Eukaryot Cell 2:, 422–430. [CrossRef][PubMed]
    [Google Scholar]
  5. Burgess A., Vigneron S., Brioudes E., Labbé J.-C., Lorca T., Castro A.. ( 2010;). Loss of human Greatwall results in G2 arrest and multiple mitotic defects due to deregulation of the cyclin B-Cdc2/PP2A balance. . Proc Natl Acad Sci U S A 107:, 12564–12569. [CrossRef][PubMed]
    [Google Scholar]
  6. Catlett N. L., Lee B.-N., Yoder O. C., Turgeon B. G.. ( 2003;). Split-marker recombination for efficient targeted deletion of fungal genes. . Fungal Genet Newsl 50:, 9–11.
    [Google Scholar]
  7. Chen L.-H., Lin C.-H., Chung K.-R.. ( 2012;). Roles for SKN7 response regulator in stress resistance, conidiation and virulence in the citrus pathogen Alternaria alternata. . Fungal Genet Biol 49:, 802–813. [CrossRef][PubMed]
    [Google Scholar]
  8. Choi J., Kim K. S., Rho H.-S., Lee Y. H.. ( 2011;). Differential roles of the phospholipase C genes in fungal development and pathogenicity of Magnaporthe oryzae. . Fungal Genet Biol 48:, 445–455. [CrossRef][PubMed]
    [Google Scholar]
  9. Chung H.-J., Kim M.-J., Lim J.-Y., Park S.-M., Cha B.-J., Kim Y.-H., Yang M.-S., Kim D.-H.. ( 2006;). A gene encoding phosphatidyl inositol-specific phospholipase C from Cryphonectria parasitica modulates the lac1 expression. . Fungal Genet Biol 43:, 326–336. [CrossRef][PubMed]
    [Google Scholar]
  10. Chung K.-R.. ( 2003;). Involvement of calcium/calmodulin signaling in cercosporin toxin biosynthesis by Cercospora nicotianae. . Appl Environ Microbiol 69:, 1187–1196. [CrossRef][PubMed]
    [Google Scholar]
  11. Chung K.-R.. ( 2012;). Stress response and pathogenicity of the necrotrophic fungal pathogen Alternaria alternata. . Scientifica 2012:, 635431. [CrossRef][PubMed]
    [Google Scholar]
  12. Chung K.-R.. ( 2013;). Mitogen-activated protein kinase signalling pathways of the tangerine pathotype of Alternaria alternata. . MAP Kinase 2:, e4. [CrossRef]
    [Google Scholar]
  13. Chung K.-R., Shilts T., Li W., Timmer L. W.. ( 2002;). Engineering a genetic transformation system for Colletotrichum acutatum, the causal fungus of lime anthracnose and postbloom fruit drop of citrus. . FEMS Microbiol Lett 213:, 33–39. [CrossRef][PubMed]
    [Google Scholar]
  14. Cornelius G., Gebauer G., Techel D.. ( 1989;). Inositol trisphosphate induces calcium release from Neurospora crassa vacuoles. . Biochem Biophys Res Commun 162:, 852–856. [CrossRef][PubMed]
    [Google Scholar]
  15. da Silva Ferreira M. E., Heinekamp T., Härtl A., Brakhage A. A., Semighini C. P., Harris S. D., Savoldi M., de Gouvêa P. F., de Souza Goldman M. H., Goldman G. H.. ( 2007;). Functional characterization of the Aspergillus fumigatus calcineurin. . Fungal Genet Biol 44:, 219–230. [CrossRef][PubMed]
    [Google Scholar]
  16. Egan J. D., García-Pedrajas M. D., Andrews D. L., Gold S. E.. ( 2009;). Calcineurin is an antagonist to PKA protein phosphorylation required for postmating filamentation and virulence, while PP2A is required for viability in Ustilago maydis. . Mol Plant Microbe Interact 22:, 1293–1301. [CrossRef][PubMed]
    [Google Scholar]
  17. Fox D. S., Heitman J.. ( 2002;). Good fungi gone bad: the corruption of calcineurin. . BioEssays 24:, 894–903. [CrossRef][PubMed]
    [Google Scholar]
  18. Fox D. S., Cruz M. C., Sia R. A. L., Ke H., Cox G. M., Cardenas M. E., Heitman J.. ( 2001;). Calcineurin regulatory subunit is essential for virulence and mediates interactions with FKBP12-FK506 in Cryptococcus neoformans. . Mol Microbiol 39:, 835–849. [CrossRef][PubMed]
    [Google Scholar]
  19. Gabev E., Kasianowicz J., Abbott T., McLaughlin S.. ( 1989;). Binding of neomycin to phosphatidylinositol 4,5-bisphosphate (PIP2). . Biochim Biophys Acta 979:, 105–112. [CrossRef][PubMed]
    [Google Scholar]
  20. Halachmi D., Eilam Y.. ( 1989;). Cytosolic and vacuolar Ca2+ concentrations in yeast cells measured with the Ca2+-sensitive fluorescence dye indo-1. . FEBS Lett 256:, 55–61. [CrossRef][PubMed]
    [Google Scholar]
  21. Harel A., Bercovich S., Yarden O.. ( 2006;). Calcineurin is required for sclerotial development and pathogenicity of Sclerotinia sclerotiorum in an oxalic acid-independent manner. . Mol Plant Microbe Interact 19:, 682–693. [CrossRef][PubMed]
    [Google Scholar]
  22. Hilioti Z., Gallagher D. A., Low-Nam S. T., Ramaswamy P., Gajer P., Kingsbury T. J., Birchwood C. J., Levchenko A., Cunningham K. W.. ( 2004;). GSK-3 kinases enhance calcineurin signaling by phosphorylation of RCNs. . Genes Dev 18:, 35–47. [CrossRef][PubMed]
    [Google Scholar]
  23. Hirata D., Harada S., Namba H., Miyakawa T.. ( 1995;). Adaptation to high-salt stress in Saccharomyces cerevisiae is regulated by Ca2+/calmodulin-dependent phosphoprotein phosphatase (calcineurin) and cAMP-dependent protein kinase. . Mol Gen Genet 249:, 257–264. [CrossRef][PubMed]
    [Google Scholar]
  24. Hyde G.. ( 1998;). Calcium imaging: a primer for mycologists. . Fungal Genet Biol 24:, 14–23. [CrossRef][PubMed]
    [Google Scholar]
  25. Hyde G. J., Heath I. B.. ( 1997;). Ca2+ gradients in hyphae and branches of Saprolegnia ferax. . Fungal Genet Biol 21:, 238–251. [CrossRef]
    [Google Scholar]
  26. Imai J., Yahara I.. ( 2000;). Role of HSP90 in salt stress tolerance via stabilization and regulation of calcineurin. . Mol Cell Biol 20:, 9262–9270. [CrossRef][PubMed]
    [Google Scholar]
  27. Inhorn R. C., Majerus P. W.. ( 1988;). Properties of inositol polyphosphate 1-phosphatase. . J Biol Chem 263:, 14559–14565.[PubMed]
    [Google Scholar]
  28. Jackson S. L., Heath I. B.. ( 1993;). Roles of calcium ions in hyphal tip growth. . Microbiol Rev 57:, 367–382.[PubMed]
    [Google Scholar]
  29. Kim Y. K., Li D., Kolattukudy P. E.. ( 1998;). Induction of Ca2+-calmodulin signaling by hard-surface contact primes Colletotrichum gloeosporioides conidia to germinate and form appressoria. . J Bacteriol 180:, 5144–5150.[PubMed]
    [Google Scholar]
  30. Kraus P. R., Heitman J.. ( 2003;). Coping with stress: calmodulin and calcineurin in model and pathogenic fungi. . Biochem Biophys Res Commun 311:, 1151–1157. [CrossRef][PubMed]
    [Google Scholar]
  31. Li L., Wright S. J., Krystofova S., Park G., Borkovich K. A.. ( 2007;). Heterotrimeric G protein signaling in filamentous fungi. . Annu Rev Microbiol 61:, 423–452. [CrossRef][PubMed]
    [Google Scholar]
  32. Lin C.-H., Chung K.-R.. ( 2010;). Specialized and shared functions of the histidine kinase- and HOG1 MAP kinase-mediated signaling pathways in Alternaria alternata, a filamentous fungal pathogen of citrus. . Fungal Genet Biol 47:, 818–827. [CrossRef][PubMed]
    [Google Scholar]
  33. Lin C.-H., Yang S. L., Chung K.-R.. ( 2009;). The YAP1 homolog-mediated oxidative stress tolerance is crucial for pathogenicity of the necrotrophic fungus Alternaria alternata in citrus. . Mol Plant Microbe Interact 22:, 942–952. [CrossRef][PubMed]
    [Google Scholar]
  34. Lin C.-H., Yang S. L., Wang N.-Y., Chung K.-R.. ( 2010;). The FUS3 MAPK signaling pathway of the citrus pathogen Alternaria alternata functions independently or cooperatively with the fungal redox-responsive AP1 regulator for diverse developmental, physiological and pathogenic processes. . Fungal Genet Biol 47:, 381–391. [CrossRef][PubMed]
    [Google Scholar]
  35. Lin C.-H., Yang S. L., Chung K.-R.. ( 2011;). Cellular responses required for oxidative stress tolerance, colonization, and lesion formation by the necrotrophic fungus Alternaria alternata in citrus. . Curr Microbiol 62:, 807–815. [CrossRef][PubMed]
    [Google Scholar]
  36. Liscovitch M., Chalifa V., Danin M., Eli Y.. ( 1991;). Inhibition of neural phospholipase D activity by aminoglycoside antibiotics. . Biochem J 279:, 319–321.[PubMed]
    [Google Scholar]
  37. Matheos D. P., Kingsbury T. J., Ahsan U. S., Cunningham K. W.. ( 1997;). Tcn1p/Crz1p, a calcineurin-dependent transcription factor that differentially regulates gene expression in Saccharomyces cerevisiae. . Genes Dev 11:, 3445–3458. [CrossRef][PubMed]
    [Google Scholar]
  38. Miller A. J., Vogg G., Sanders D.. ( 1990;). Cytosolic calcium homeostasis in fungi: roles of plasma membrane transport and intracellular sequestration of calcium. . Proc Natl Acad Sci U S A 87:, 9348–9352. [CrossRef][PubMed]
    [Google Scholar]
  39. Muller E. R., Locke E. G., Cunningham K. W.. ( 2001;). Differential regulation of two Ca2+ influx systems by pheromone signaling in Saccharomyces cerevisiae. . Genetics 159:, 1527–1538.[PubMed]
    [Google Scholar]
  40. Muthukumar G., Nickerson K. W.. ( 1984;). Ca(II)-calmodulin regulation of fungal dimorphism in Ceratocystis ulmi. . J Bacteriol 159:, 390–392.[PubMed]
    [Google Scholar]
  41. Ohsumi Y., Anraku Y.. ( 1983;). Calcium transport driven by a proton motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae. . J Biol Chem 258:, 5614–5617.[PubMed]
    [Google Scholar]
  42. Payne W. E., Fitzgerald-Hayes M.. ( 1993;). A mutation in PLC1, a candidate phosphoinositide-specific phospholipase C gene from Saccharomyces cerevisiae, causes aberrant mitotic chromosome segregation. . Mol Cell Biol 13:, 4351–4364.[PubMed]
    [Google Scholar]
  43. Prokisch H., Yarden O., Dieminger M., Tropschug M., Barthelmess I. B.. ( 1997;). Impairment of calcineurin function in Neurospora crassa reveals its essential role in hyphal growth, morphology and maintenance of the apical Ca2+ gradient. . Mol Gen Genet 256:, 104–114. [CrossRef][PubMed]
    [Google Scholar]
  44. Rao J. P., Subramanyam C.. ( 1999;). Requirement of Ca2+ for aflatoxin production: inhibitory effect of Ca2+ channel blockers on aflatoxin production by Aspergillus parasiticus NRRL 2999. . Lett Appl Microbiol 28:, 85–88. [CrossRef][PubMed]
    [Google Scholar]
  45. Rho H.-S., Jeon J., Lee Y. H.. ( 2009;). Phospholipase C-mediated calcium signalling is required for fungal development and pathogenicity in Magnaporthe oryzae. . Mol Plant Pathol 10:, 337–346. [CrossRef][PubMed]
    [Google Scholar]
  46. Robson G. D., Wiebe M. G., Trinci A. P. J.. ( 1991;). Involvement of Ca2+ in the regulation of hyphal extension and branching in Fusarium graminearum A3/5. . Exp Mycol 15:, 263–272. [CrossRef]
    [Google Scholar]
  47. Rusnak F., Mertz P.. ( 2000;). Calcineurin: form and function. . Physiol Rev 80:, 1483–1521.[PubMed]
    [Google Scholar]
  48. Schacht J.. ( 1976;). Inhibition by neomycin of polyphosphoinositide turnover in subcellular fractions of guinea-pig cerebral cortex in vitro. . J Neurochem 27:, 1119–1124. [CrossRef][PubMed]
    [Google Scholar]
  49. Schumacher J., Viaud M., Simon A., Tudzynski B.. ( 2008;). The Galpha subunit BCG1, the phospholipase C (BcPLC1) and the calcineurin phosphatase co-ordinately regulate gene expression in the grey mould fungus Botrytis cinerea. . Mol Microbiol 67:, 1027–1050. [CrossRef][PubMed]
    [Google Scholar]
  50. Shaw B. D., Hoch H. C.. ( 2000;). Ca2+ regulation of Phyllosticta ampelicida pycnidiospore germination and appressorium formation. . Fungal Genet Biol 31:, 43–53. [CrossRef][PubMed]
    [Google Scholar]
  51. Stathopoulos A. M., Cyert M. S.. ( 1997;). Calcineurin acts through the CRZ1/TCN1-encoded transcription factor to regulate gene expression in yeast. . Genes Dev 11:, 3432–3444. [CrossRef][PubMed]
    [Google Scholar]
  52. Stie J., Fox D.. ( 2008;). Calcineurin regulation in fungi and beyond. . Eukaryot Cell 7:, 177–186. [CrossRef][PubMed]
    [Google Scholar]
  53. Taylor D. L., Wang Y. L.. ( 1980;). Fluorescently labelled molecules as probes of the structure and function of living cells. . Nature 284:, 405–410. [CrossRef][PubMed]
    [Google Scholar]
  54. Tsai H.-C., Yang S. L., Chung K.-R.. ( 2013;). Cyclic AMP-dependent protein kinase A negatively regulates conidia formation by the tangerine pathotype of Alternaria alternata. . World J Microbiol Biotechnol 29:, 289–300. [CrossRef][PubMed]
    [Google Scholar]
  55. Wang J. P., Needleman D. H., Seryshev A. B., Aghdasi B., Slavik K. J., Liu S. Q., Pedersen S. E., Hamilton S. L.. ( 1996;). Interaction between ryanodine and neomycin binding sites on Ca2+ release channel from skeletal muscle sarcoplasmic reticulum. . J Biol Chem 271:, 8387–8393. [CrossRef][PubMed]
    [Google Scholar]
  56. Wang N.-Y., Lin C.-H., Chung K.-R.. ( 2010;). A G α subunit gene is essential for conidiation and potassium efflux but dispensable for pathogenicity of Alternaria alternata on citrus. . Curr Genet 56:, 43–51. [CrossRef][PubMed]
    [Google Scholar]
  57. Wendland J.. ( 2001;). Comparison of morphogenetic networks of filamentous fungi and yeast. . Fungal Genet Biol 34:, 63–82. [CrossRef][PubMed]
    [Google Scholar]
  58. Yago J. I., Lin C.-H., Chung K.-R.. ( 2011;). The SLT2 mitogen-activated protein kinase-mediated signalling pathway governs conidiation, morphogenesis, fungal virulence and production of toxin and melanin in the tangerine pathotype of Alternaria alternata. . Mol Plant Pathol 12:, 653–665. [CrossRef][PubMed]
    [Google Scholar]
  59. Yang S. L., Chung K.-R.. ( 2012;). The NADPH oxidase-mediated production of H2O2 and resistance to oxidative stress in the necrotrophic pathogen Alternaria alternata of citrus. . Mol Plant Pathol 13:, 900–914. [CrossRef][PubMed]
    [Google Scholar]
  60. Yang S. L., Chung K.-R.. ( 2013;). Similar and distinct roles of NADPH oxidase components in the tangerine pathotype of Alternaria alternata. . Mol Plant Pathol 14:, 543–556. [CrossRef][PubMed]
    [Google Scholar]
  61. Yang S. L., Lin C.-H., Chung K.-R.. ( 2009;). Coordinate control of oxidative stress, vegetative growth and fungal pathogenicity via the AP1-mediated pathway in the rough lemon pathotype of Alternaria alternata. . Physiol Mol Plant Pathol 74:, 100–110. [CrossRef]
    [Google Scholar]
  62. You B.-J., Lee M.-H., Chung K.-R.. ( 2009;). Gene-specific disruption in the filamentous fungus Cercospora nicotianae using a split-marker approach. . Arch Microbiol 191:, 615–622. [CrossRef][PubMed]
    [Google Scholar]
  63. Zelter A., Bencina M., Bowman B. J., Yarden O., Read N. D.. ( 2004;). A comparative genomic analysis of the calcium signaling machinery in Neurospora crassa, Magnaporthe grisea, and Saccharomyces cerevisiae. . Fungal Genet Biol 41:, 827–841. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.077818-0
Loading
/content/journal/micro/10.1099/mic.0.077818-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error