1887

Abstract

The clustered regularly interspaced short palindromic repeat (CRISPR) confers adaptive immunity against phages via sequence fragments (spacers) derived from mobile genetic elements (MGEs), thus serving as a memory of past host–phage co-evolution. To understand co-evolutionary dynamics in natural settings, we examined CRISPR diversity in 94 isolates of from a small eutrophic pond. Fifty-two isolates possessed the CRISPR and were classified into 22 different CRISPR-related genotypes, suggesting stable coexistence of multiple genotypes with different phage susceptibility. Seven CRISPR-related genotypes showed variation of spacers at the leader-end of the CRISPR, indicating active spacer addition from MGEs. An abundant phylotype (based on the internal transcribed spacer of the rRNA gene) contained different CRISPR spacer genotypes with the same CRISPR-associated gene. These data suggest that selective phage infection and possibly plasmid transfer may contribute to maintenance of multiple genotypes of and that rapid co-evolution within a host–phage combination may be driven by increased contact frequency. Forty-two isolates lacked detectable CRISPR loci. Relative abundance of the CRISPR-lacking genotypes in the population suggests that CRISPR loss may be selected for enhanced genetic exchange.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.073494-0
2014-05-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/5/903.html?itemId=/content/journal/micro/10.1099/mic.0.073494-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F. , Gish W. , Miller W. , Myers E. W. , Lipman D. J. . ( 1990; ). Basic local alignment search tool. . J Mol Biol 215:, 403–410.[PubMed] [CrossRef]
    [Google Scholar]
  2. Andersson A. F. , Banfield J. F. . ( 2008; ). Virus population dynamics and acquired virus resistance in natural microbial communities. . Science 320:, 1047–1050. [CrossRef] [PubMed]
    [Google Scholar]
  3. Barrangou R. , Fremaux C. , Deveau H. , Richards M. , Boyaval P. , Moineau S. , Romero D. A. , Horvath P. . ( 2007; ). CRISPR provides acquired resistance against viruses in prokaryotes. . Science 315:, 1709–1712. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bergh O. , Børsheim K. Y. , Bratbak G. , Heldal M. . ( 1989; ). High abundance of viruses found in aquatic environments. . Nature 340:, 467–468. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bolch C. J. S. , Blackburn S. , Neilan B. A. , Grewe P. M. . ( 1996; ). Genetic characterization of strains of cyanobacteria using PCR-RFLP of the cpcBA intergenic spacer and flanking regions. . J Phycol 32:, 445–451. [CrossRef]
    [Google Scholar]
  6. Boyer S. L. , Flechtner V. R. , Johansen J. R. . ( 2001; ). Is the 16S–23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. . Mol Biol Evol 18:, 1057–1069. [CrossRef] [PubMed]
    [Google Scholar]
  7. Briand E. , Escoffier N. , Straub C. , Sabart M. , Quiblier C. , Humbert J. F. . ( 2009; ). Spatiotemporal changes in the genetic diversity of a bloom-forming Microcystis aeruginosa (cyanobacteria) population. . ISME J 3:, 419–429. [CrossRef] [PubMed]
    [Google Scholar]
  8. Brouns S. J. , Jore M. M. , Lundgren M. , Westra E. R. , Slijkhuis R. J. , Snijders A. P. , Dickman M. J. , Makarova K. S. , Koonin E. V. , van der Oost J. . ( 2008; ). Small CRISPR RNAs guide antiviral defense in prokaryotes. . Science 321:, 960–964. [CrossRef] [PubMed]
    [Google Scholar]
  9. Buckling A. , Rainey P. B. . ( 2002; ). Antagonistic coevolution between a bacterium and a bacteriophage. . Proc Biol Sci 269:, 931–936. [CrossRef] [PubMed]
    [Google Scholar]
  10. Clement M. , Posada D. , Crandall K. A. . ( 2000; ). tcs: a computer program to estimate gene genealogies. . Mol Ecol 9:, 1657–1659. [CrossRef] [PubMed]
    [Google Scholar]
  11. Deveau H. , Barrangou R. , Garneau J. E. , Labonté J. , Fremaux C. , Boyaval P. , Romero D. A. , Horvath P. , Moineau S. . ( 2008; ). Phage response to CRISPR-encoded resistance in Streptococcus thermophilus . . J Bacteriol 190:, 1390–1400. [CrossRef] [PubMed]
    [Google Scholar]
  12. Edgar R. C. . ( 2004; ). muscle: multiple sequence alignment with high accuracy and high throughput. . Nucleic Acids Res 32:, 1792–1797. [CrossRef] [PubMed]
    [Google Scholar]
  13. Garneau J. E. , Dupuis M. E. , Villion M. , Romero D. A. , Barrangou R. , Boyaval P. , Fremaux C. , Horvath P. , Magadán A. H. , Moineau S. . ( 2010; ). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. . Nature 468:, 67–71. [CrossRef] [PubMed]
    [Google Scholar]
  14. Grissa I. , Vergnaud G. , Pourcel C. . ( 2008; ). CRISPRcompar: a website to compare clustered regularly interspaced short palindromic repeats. . Nucleic Acids Res 36: (Web Server), W145–148. [CrossRef] [PubMed]
    [Google Scholar]
  15. Heidelberg J. F. , Nelson W. C. , Schoenfeld T. , Bhaya D. . ( 2009; ). Germ warfare in a microbial mat community: CRISPRs provide insights into the co-evolution of host and viral genomes. . PLoS ONE 4:, e4169. [CrossRef] [PubMed]
    [Google Scholar]
  16. Held N. L. , Whitaker R. J. . ( 2009; ). Viral biogeography revealed by signatures in Sulfolobus islandicus genomes. . Environ Microbiol 11:, 457–466. [CrossRef] [PubMed]
    [Google Scholar]
  17. Held N. L. , Herrera A. , Cadillo-Quiroz H. , Whitaker R. J. . ( 2010; ). CRISPR associated diversity within a population of Sulfolobus islandicus . . PLoS ONE 5:, e12988. [CrossRef] [PubMed]
    [Google Scholar]
  18. Janse I. , Kardinaal W. E. , Meima M. , Fastner J. , Visser P. M. , Zwart G. . ( 2004; ). Toxic and nontoxic Microcystis colonies in natural populations can be differentiated on the basis of rRNA gene internal transcribed spacer diversity. . Appl Environ Microbiol 70:, 3979–3987. [CrossRef] [PubMed]
    [Google Scholar]
  19. Jansen R. , Embden J. D. , Gaastra W. , Schouls L. M. . ( 2002; ). Identification of genes that are associated with DNA repeats in prokaryotes. . Mol Microbiol 43:, 1565–1575. [CrossRef] [PubMed]
    [Google Scholar]
  20. Jorth P. , Whiteley M. . ( 2012; ). An evolutionary link between natural transformation and CRISPR adaptive immunity. . MBio 3:, e00309–e00312. [CrossRef] [PubMed]
    [Google Scholar]
  21. Kasai F. , Kawachi M. , Erata M. , Watanabe M. M. . (editors) ( 2004; ). NIES-Collection List of Strains, , 7th edn. . Tsukuba:: National Institute for Environmental Studies;.
    [Google Scholar]
  22. Kimura S. , Yoshida T. , Hosoda N. , Honda T. , Kuno S. , Kamiji R. , Hashimoto R. , Sako Y. . ( 2012; ). Diurnal infection patterns and impact of Microcystis cyanophages in a Japanese pond. . Appl Environ Microbiol 78:, 5805–5811. [CrossRef] [PubMed]
    [Google Scholar]
  23. Kimura S. , Sako Y. , Yoshida T. . ( 2013; ). Rapid Microcystis cyanophage gene diversification revealed by long- and short-term genetic analyses of the tail sheath gene in a natural pond. . Appl Environ Microbiol 79:, 2789–2795. [CrossRef] [PubMed]
    [Google Scholar]
  24. Kunin V. , He S. , Warnecke F. , Peterson S. B. , Garcia Martin H. , Haynes M. , Ivanova N. , Blackall L. L. , Breitbart M. . & other authors ( 2008; ). A bacterial metapopulation adapts locally to phage predation despite global dispersal. . Genome Res 18:, 293–297. [CrossRef] [PubMed]
    [Google Scholar]
  25. Kuno S. , Yoshida T. , Kaneko T. , Sako Y. . ( 2012; ). Intricate interactions between the bloom-forming cyanobacterium Microcystis aeruginosa and foreign genetic elements, revealed by diversified clustered regularly interspaced short palindromic repeat (CRISPR) signatures. . Appl Environ Microbiol 78:, 5353–5360. [CrossRef] [PubMed]
    [Google Scholar]
  26. Makarova K. S. , Haft D. H. , Barrangou R. , Brouns S. J. , Charpentier E. , Horvath P. , Moineau S. , Mojica F. J. , Wolf Y. I. . & other authors ( 2011a; ). Evolution and classification of the CRISPR-Cas systems. . Nat Rev Microbiol 9:, 467–477. [CrossRef] [PubMed]
    [Google Scholar]
  27. Makarova K. S. , Wolf Y. I. , Snir S. , Koonin E. V. . ( 2011b; ). Defense islands in bacterial and archaeal genomes and prediction of novel defense systems. . J Bacteriol 193:, 6039–6056. [CrossRef] [PubMed]
    [Google Scholar]
  28. Marraffini L. A. , Sontheimer E. J. . ( 2008; ). CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. . Science 322:, 1843–1845. [CrossRef] [PubMed]
    [Google Scholar]
  29. Marraffini L. A. , Sontheimer E. J. . ( 2010; ). CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. . Nat Rev Genet 11:, 181–190. [CrossRef] [PubMed]
    [Google Scholar]
  30. Marston M. F. , Pierciey F. J. Jr , Shepard A. , Gearin G. , Qi J. , Yandava C. , Schuster S. C. , Henn M. R. , Martiny J. B. . ( 2012; ). Rapid diversification of coevolving marine Synechococcus and a virus. . Proc Natl Acad Sci U S A 109:, 4544–4549. [CrossRef] [PubMed]
    [Google Scholar]
  31. Otsuka S. , Suda S. , Li R. , Watanabe M. , Oyaizu H. , Matsumoto S. , Watanabe M. M. . ( 1999; ). Phylogenetic relationships between toxic and non-toxic strains of the genus Microcystis based on 16S to 23S internal transcribed spacer sequence. . FEMS Microbiol Lett 172:, 15–21. [CrossRef] [PubMed]
    [Google Scholar]
  32. Palmer K. L. , Gilmore M. S. . ( 2010; ). Multidrug-resistant enterococci lack CRISPR-cas. . MBio 1:, e00227–e00210. [CrossRef] [PubMed]
    [Google Scholar]
  33. Paterson S. , Vogwill T. , Buckling A. , Benmayor R. , Spiers A. J. , Thomson N. R. , Quail M. , Smith F. , Walker D. . & other authors ( 2010; ). Antagonistic coevolution accelerates molecular evolution. . Nature 464:, 275–278. [CrossRef] [PubMed]
    [Google Scholar]
  34. Rodriguez-Valera F. , Martin-Cuadrado A. B. , Rodriguez-Brito B. , Pasić L. , Thingstad T. F. , Rohwer F. , Mira A. . ( 2009; ). Explaining microbial population genomics through phage predation. . Nat Rev Microbiol 7:, 828–836. [CrossRef] [PubMed]
    [Google Scholar]
  35. Sabart M. , Pobel D. , Latour D. , Robin J. , Salençon M. J. , Humbert J. F. . ( 2009; ). Spatiotemporal changes in the genetic diversity in French bloom-forming populations of the toxic cyanobacterium, Microcystis aeruginosa . . Environ Microbiol Rep 1:, 263–272. [CrossRef] [PubMed]
    [Google Scholar]
  36. Sabart M. , Pobel D. , Briand E. , Combourieu B. , Salençon M. J. , Humbert J. F. , Latour D. . ( 2010; ). Spatiotemporal variations in microcystin concentrations and in the proportions of microcystin-producing cells in several Microcystis aeruginosa populations. . Appl Environ Microbiol 76:, 4750–4759. [CrossRef] [PubMed]
    [Google Scholar]
  37. Schwabe W. , Weihe A. , Börner T. , Henning M. , Kohl J.-G. . ( 1988; ). Plasmids in toxic and nontoxic strains of the cyanobacterium Microcystis aeruginosa . . Curr Microbiol 17:, 133–137. [CrossRef]
    [Google Scholar]
  38. Smith J. K. , Parry J. D. , Day J. G. , Smith R. J. . ( 1998; ). A PCR technique based on the Hip1 interspersed repetitive sequence distinguishes cyanobacterial species and strains. . Microbiology 144:, 2791–2801. [CrossRef] [PubMed]
    [Google Scholar]
  39. Steffen M. M. , Li Z. , Effler T. C. , Hauser L. J. , Boyer G. L. , Wilhelm S. W. . ( 2012; ). Comparative metagenomics of toxic freshwater cyanobacteria bloom communities on two continents. . PLoS ONE 7:, e44002. [CrossRef] [PubMed]
    [Google Scholar]
  40. Suttle C. A. . ( 2007; ). Marine viruses–major players in the global ecosystem. . Nat Rev Microbiol 5:, 801–812. [CrossRef] [PubMed]
    [Google Scholar]
  41. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  42. Tanabe Y. , Watanabe M. M. . ( 2011; ). Local expansion of a panmictic lineage of water bloom-forming cyanobacterium Microcystis aeruginosa . . PLoS ONE 6:, e17085. [CrossRef] [PubMed]
    [Google Scholar]
  43. Tominaga H. , Kawagishi S. , Ashida H. , Sawa Y. , Ochiai H. . ( 1995; ). Structure and replication of cryptic plasmids, pMA1 and pMA2, from a unicellular cyanobacterium, Microcystis aeruginosa . . Biosci Biotechnol Biochem 59:, 1217–1220. [CrossRef] [PubMed]
    [Google Scholar]
  44. Tyson G. W. , Banfield J. F. . ( 2008; ). Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses. . Environ Microbiol 10:, 200–207.[PubMed]
    [Google Scholar]
  45. Vale P. F. , Little T. J. . ( 2010; ). CRISPR-mediated phage resistance and the ghost of coevolution past. . Proc Biol Sci 277:, 2097–2103. [CrossRef] [PubMed]
    [Google Scholar]
  46. Van Valen L. . ( 1974; ). Molecular evolution as predicted by natural selection. . J Mol Evol 3:, 89–101. [CrossRef] [PubMed]
    [Google Scholar]
  47. Weinberger A. D. , Sun C. L. , Pluciński M. M. , Denef V. J. , Thomas B. C. , Horvath P. , Barrangou R. , Gilmore M. S. , Getz W. M. , Banfield J. F. . ( 2012; ). Persisting viral sequences shape microbial CRISPR-based immunity. . PLOS Comput Biol 8:, e1002475. [CrossRef] [PubMed]
    [Google Scholar]
  48. Wiedenheft B. , Sternberg S. H. , Doudna J. A. . ( 2012; ). RNA-guided genetic silencing systems in bacteria and archaea. . Nature 482:, 331–338. [CrossRef] [PubMed]
    [Google Scholar]
  49. Wilson A. E. , Sarnelle O. , Neilan B. A. , Salmon T. P. , Gehringer M. M. , Hay M. E. . ( 2005; ). Genetic variation of the bloom-forming cyanobacterium Microcystis aeruginosa within and among lakes: implications for harmful algal blooms. . Appl Environ Microbiol 71:, 6126–6133. [CrossRef] [PubMed]
    [Google Scholar]
  50. Yoshida M. , Yoshida T. , Takashima Y. , Kondo R. , Hiroishi S. . ( 2005; ). Genetic diversity of the toxic cyanobacterium Microcystis in Lake Mikata. . Environ Toxicol 20:, 229–234. [CrossRef] [PubMed]
    [Google Scholar]
  51. Yoshida M. , Yoshida T. , Satomi M. , Takashima Y. , Hosoda N. , Hiroishi S. . ( 2008a; ). Intra-specific phenotypic and genotypic variation in toxic cyanobacterial Microcystis strains. . J Appl Microbiol 105:, 407–415. [CrossRef] [PubMed]
    [Google Scholar]
  52. Yoshida T. , Nagasaki K. , Takashima Y. , Shirai Y. , Tomaru Y. , Takao Y. , Sakamoto S. , Hiroishi S. , Ogata H. . ( 2008b; ). Ma-LMM01 infecting toxic Microcystis aeruginosa illuminates diverse cyanophage genome strategies. . J Bacteriol 190:, 1762–1772. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.073494-0
Loading
/content/journal/micro/10.1099/mic.0.073494-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error