1887

Abstract

The probiotic Gram-positive bacterium BL23 is naturally confronted with salt-stress habitats. It has been previously reported that growth in high-salt medium, containing 0.8 M NaCl, leads to modifications in the cell envelope of this bacterium. In this study, we report that BL23 has an increased ability to form biofilms and to bind cations in high-salt conditions. This behaviour correlated with modifications of surface properties involving teichoic acids, which are important cell wall components. We also showed that, in these high-salt conditions, BL23 produces less of the cell wall polymer lipoteichoic acid (LTA), and that this anionic polymer has a shorter mean chain length and a lower level of -alanyl-substitution. Analysis of the transcript levels of the operon, encoding the enzymes required for the incorporation of -alanine into anionic polymers, showed a 16-fold reduction in mRNA levels, which is consistent with a decrease in -alanine substitutions on LTA. Furthermore, a 13-fold reduction in the transcript levels was observed for the gene LCABL_09330 coding for a putative LTA synthase. To provide further experimental evidence that LCABL_09330 is a true LTA synthase (LtaS) in BL23, the enzymic domain was cloned and expressed in . The purified protein was able to hydrolyse the membrane lipid phosphatidylglycerol as expected for an LTA synthase enzyme, and hence LCABL_09330 was renamed LtaS. The purified enzyme showed Mn-ion dependent activity, and its activity was modulated by differences in NaCl concentration. The decrease in both transcript levels and enzyme activity observed in high-salt conditions might influence the length of the LTA backbone chain. A putative function of the modified LTA structure is discussed that is compatible with the growth under salt-stress conditions and with the overall envelope modifications taking place during this stress condition.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.070607-0
2013-11-01
2020-11-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/11/2416.html?itemId=/content/journal/micro/10.1099/mic.0.070607-0&mimeType=html&fmt=ahah

References

  1. Allievi M. C., Sabbione F., Prado-Acosta M., Palomino M. M., Ruzal S. M., Sanchez-Rivas C.. ( 2011;). Metal biosorption by surface-layer proteins from Bacillus species. J Microbiol Biotechnol21:147–153 [CrossRef][PubMed]
    [Google Scholar]
  2. Billot-Klein D., Legrand R., Schoot B., van Heijenoort J., Gutmann L.. ( 1997;). Peptidoglycan structure of Lactobacillus casei, a species highly resistant to glycopeptide antibiotics. J Bacteriol179:6208–6212[PubMed]
    [Google Scholar]
  3. Clemans D. L., Kolenbrander P. E., Debabov D. V., Zhang Q., Lunsford R. D., Sakone H., Whittaker C. J., Heaton M. P., Neuhaus F. C.. ( 1999;). Insertional inactivation of genes responsible for the D-alanylation of lipoteichoic acid in Streptococcus gordonii DL1 (Challis) affects intrageneric coaggregations. Infect Immun67:2464–2474[PubMed]
    [Google Scholar]
  4. Crow V. L., Coolbear T., Gopal P. K., Martley F. G., McKay L. L., Riepe H.. ( 1995;). The role of autolysis of lactic acid bacteria in the ripening of cheese. Int Dairy J5:855–875 [CrossRef]
    [Google Scholar]
  5. Debabov D. V., Heaton M. P., Zhang Q., Stewart K. D., Lambalot R. H., Neuhaus F. C.. ( 1996;). The D-alanyl carrier protein in Lactobacillus casei: cloning, sequencing, and expression of dltC. . J Bacteriol178:3869–3876[PubMed]
    [Google Scholar]
  6. Ellwood D. C., Tempest D. W.. ( 1972;). Influence of culture pH on the content and composition of teichoic acids in the walls of Bacillus subtilis. . J Gen Microbiol73:395–402 [CrossRef][PubMed]
    [Google Scholar]
  7. Fischer W., Mannsfeld T., Hagen G.. ( 1990;). On the basic structure of poly(glycerophosphate) lipoteichoic acids. Biochem Cell Biol68:33–43 [CrossRef][PubMed]
    [Google Scholar]
  8. Fox P. F., Wallace J. M., Morgan S., Lynch C. M., Niland E. J., Tobin J.. ( 1996;). Acceleration of cheese ripening. Antonie van Leeuwenhoek70:271–297 [CrossRef][PubMed]
    [Google Scholar]
  9. Gründling A., Schneewind O.. ( 2007;). Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus. . Proc Natl Acad Sci U S A104:8478–8483 [CrossRef][PubMed]
    [Google Scholar]
  10. Hyyrylainen H. L., Vitikainen M., Thwaite J., Wu H., Sarvas M., Harwood C. R., Kontinen V. P., Stephenson K.. ( 2000;). D-Alanine substitution of teichoic acids as a modulator of protein folding and stability at the cytoplasmic membrane/cell wall interface of Bacillus subtilis. . J Biol Chem275:26696–26703[PubMed]
    [Google Scholar]
  11. Karatsa-Dodgson M., Wörmann M. E., Gründling A.. ( 2010;). In vitro analysis of the Staphylococcus aureus lipoteichoic acid synthase enzyme using fluorescently labeled lipids. J Bacteriol192:5341–5349[PubMed][CrossRef]
    [Google Scholar]
  12. Kets E., Teunissen P., de Bont J.. ( 1996;). Effect of compatible solutes on survival of lactic acid bacteria subjected to drying. Appl Environ Microbiol62:259–261[PubMed]
    [Google Scholar]
  13. Kiriukhin M. Y., Neuhaus F. C.. ( 2001;). D-alanylation of lipoteichoic acid: role of the D-alanyl carrier protein in acylation. J Bacteriol183:2051–2058 [CrossRef][PubMed]
    [Google Scholar]
  14. Koch S., Oberson G., Eugster-Meier E., Meile L., Lacroix C.. ( 2007;). Osmotic stress induced by salt increases cell yield, autolytic activity, and survival of lyophilization of Lactobacillus delbrueckii subsp. lactis. . Int J Food Microbiol117:36–42 [CrossRef][PubMed]
    [Google Scholar]
  15. Koprivnjak T., Mlakar V., Swanson L., Fournier B., Peschel A., Weiss J. P.. ( 2006;). Cation-induced transcriptional regulation of the dlt operon of Staphylococcus aureus. . J Bacteriol188:3622–3630 [CrossRef][PubMed]
    [Google Scholar]
  16. Kunst A., Draeger B., Ziegenhorn J.. ( 1984;). VI. Metabolites 1: carbohydrates. In . Methods of Enzymatic Analysis163–172 Weinheim: Verlag Chemie;
    [Google Scholar]
  17. Lambert P. A., Hancock I. C., Baddiley J.. ( 1975;). Influence of alanyl ester residues on the binding of magnesium ions to teichoic acids. Biochem J151:671–676[PubMed]
    [Google Scholar]
  18. Lebeer S., Verhoeven T. L., Perea Vélez M., Vanderleyden J., De Keersmaecker S. C.. ( 2007;). Impact of environmental and genetic factors on biofilm formation by the probiotic strain Lactobacillus rhamnosus GG. Appl Environ Microbiol73:6768–6775 [CrossRef][PubMed]
    [Google Scholar]
  19. Lebeer S., Vanderleyden J., De Keersmaecker S. C.. ( 2008;). Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev72:728–764 [CrossRef][PubMed]
    [Google Scholar]
  20. Lebeer S., Claes I. J. J., Vanderleyden J.. ( 2012;). Anti-inflammatory potential of probiotics: lipoteichoic acid makes a difference. Trends Microbiol20:5–10 [CrossRef][PubMed]
    [Google Scholar]
  21. López C. S., Heras H., Garda H., Ruzal S., Sánchez-Rivas C., Rivas E.. ( 2000;). Biochemical and biophysical studies of Bacillus subtilis envelopes under hyperosmotic stress. Int J Food Microbiol55:137–142 [CrossRef][PubMed]
    [Google Scholar]
  22. Lu D., Wörmann M. E., Zhang X., Schneewind O., Gründling A., Freemont P. S.. ( 2009;). Structure-based mechanism of lipoteichoic acid synthesis by Staphylococcus aureus LtaS.. Proc Natl Acad Sci U S A106:1584–1589[PubMed][CrossRef]
    [Google Scholar]
  23. MacArthur A. E., Archibald A. R.. ( 1984;). Effect of culture pH on the D-alanine ester content of lipoteichoic acid in Staphylococcus aureus. . J Bacteriol160:792–793[PubMed]
    [Google Scholar]
  24. Machado M. C., López C. S., Heras H., Rivas E. A.. ( 2004;). Osmotic response in Lactobacillus casei ATCC 393: biochemical and biophysical characteristics of membrane. Arch Biochem Biophys422:61–70 [CrossRef][PubMed]
    [Google Scholar]
  25. Mazé A., Boël G., Zúñiga M., Bourand A., Loux V., Yebra M. J., Monedero V., Correia K., Jacques N.. & other authors ( 2010;). Complete genome sequence of the probiotic Lactobacillus casei strain BL23. J Bacteriol192:2647–2648 [CrossRef][PubMed]
    [Google Scholar]
  26. Mohamadzadeh M., Pfeiler E. A., Brown J. B., Zadeh M., Gramarossa M., Managlia E., Bere P., Sarraj B., Khan M. W.. & other authors ( 2011;). Regulation of induced colonic inflammation by Lactobacillus acidophilus deficient in lipoteichoic acid. Proc Natl Acad Sci U S A108:Suppl. 14623–4630 [CrossRef][PubMed]
    [Google Scholar]
  27. Morath S., Geyer A., Hartung T.. ( 2001;). Structure-function relationship of cytokine induction by lipoteichoic acid from Staphylococcus aureus. . J Exp Med193:393–397 [CrossRef][PubMed]
    [Google Scholar]
  28. Neuhaus F. C., Baddiley J.. ( 2003;). A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in gram-positive bacteria. Microbiol Mol Biol Rev67:686–723 [CrossRef][PubMed]
    [Google Scholar]
  29. O’Rourke E. J., Chevalier C., Boiteux S., Labigne A., Ielpi L., Radicella J. P.. ( 2000;). A novel 3-methyladenine DNA glycosylase from Helicobacter pylori defines a new class within the endonuclease III family of base excision repair glycosylases. J Biol Chem275:20077–20083 [CrossRef][PubMed]
    [Google Scholar]
  30. Palomino M. M., Sanchez-Rivas C., Ruzal S. M.. ( 2009;). High salt stress in Bacillus subtilis: involvement of PBP4* as a peptidoglycan hydrolase. Res Microbiol160:117–124 [CrossRef][PubMed]
    [Google Scholar]
  31. Palomino M. M., Allievi M. C., Prado-Acosta M., Sanchez-Rivas C., Ruzal S. M.. ( 2010;). New method for electroporation of Lactobacillus species grown in high salt. J Microbiol Methods83:164–167 [CrossRef][PubMed]
    [Google Scholar]
  32. Palumbo E., Deghorain M., Cocconcelli P. S., Kleerebezem M., Geyer A., Hartung T., Morath S., Hols P.. ( 2006;). D-alanyl ester depletion of teichoic acids in Lactobacillus plantarum results in a major modification of lipoteichoic acid composition and cell wall perforations at the septum mediated by the Acm2 autolysin. J Bacteriol188:3709–3715 [CrossRef][PubMed]
    [Google Scholar]
  33. Perea Vélez M., Verhoeven T. L., Draing C., Von Aulock S., Pfitzenmaier M., Geyer A., Lambrichts I., Grangette C., Pot B.. & other authors ( 2007;). Functional analysis of D-alanylation of lipoteichoic acid in the probiotic strain Lactobacillus rhamnosus GG. Appl Environ Microbiol73:3595–3604 [CrossRef][PubMed]
    [Google Scholar]
  34. Piuri M., Sanchez-Rivas C., Ruzal S. M.. ( 2003;). Adaptation to high salt in Lactobacillus: role of peptides and proteolytic enzymes. J Appl Microbiol95:372–379 [CrossRef][PubMed]
    [Google Scholar]
  35. Piuri M., Sanchez-Rivas C., Ruzal S. M.. ( 2005;). Cell wall modifications during osmotic stress in Lactobacillus casei. . J Appl Microbiol98:84–95 [CrossRef][PubMed]
    [Google Scholar]
  36. Reichmann N. T., Gründling A.. ( 2011;). Location, synthesis and function of glycolipids and polyglycerolphosphate lipoteichoic acid in Gram-positive bacteria of the phylum Firmicutes. . FEMS Microbiol Lett319:97–105 [CrossRef][PubMed]
    [Google Scholar]
  37. Schirner K., Marles-Wright J., Lewis R. J., Errington J.. ( 2009;). Distinct and essential morphogenic functions for wall- and lipo-teichoic acids in Bacillus subtilis. . EMBO J28:830–842 [CrossRef][PubMed]
    [Google Scholar]
  38. Schnitger H., Papenberg K., Ganse E., Czok R., Buecher T., Adam H.. ( 1959;). [Chromatography of phosphorus-containing metabolities in a human liver biopsy specimen]. Biochem Z332:167–185[PubMed]
    [Google Scholar]
  39. Silhavy T. J., Kahne D., Walker S.. ( 2010;). The bacterial cell envelope. Cold Spring Harb Perspect Biol2:a000414 [CrossRef][PubMed]
    [Google Scholar]
  40. Soon Jang K., Jung Eun B., Seung H. H., Dae K. C., Byung-Gee K.. ( 2011;). Multi-spectrometric analyses of lipoteichoic acids isolated from Lactobacillus plantarum . Biochem Biophys Res Commun407:823–830 [CrossRef]
    [Google Scholar]
  41. Steen A., Palumbo E., Deghorain M., Cocconcelli P. S., Delcour J., Kuipers O. P., Kok J., Buist G., Hols P.. ( 2005;). Autolysis of Lactococcus lactis is increased upon D-alanine depletion of peptidoglycan and lipoteichoic acids. J Bacteriol187:114–124 [CrossRef][PubMed]
    [Google Scholar]
  42. Veerkamp J. H.. ( 1971;). Fatty acid composition of Bifidobacterium and Lactobacillus strains. J Bacteriol108:861–867[PubMed]
    [Google Scholar]
  43. Walter J., Loach D. M., Alqumber M., Rockel C., Hermann C., Pfitzenmaier M., Tannock G. W.. ( 2007;). D-alanyl ester depletion of teichoic acids in Lactobacillus reuteri 100-23 results in impaired colonization of the mouse gastrointestinal tract. Environ Microbiol9:1750–1760 [CrossRef][PubMed]
    [Google Scholar]
  44. Webb A. J., Karatsa-Dodgson M., Gründling A.. ( 2009;). Two-enzyme systems for glycolipid and polyglycerolphosphate lipoteichoic acid synthesis in Listeria monocytogenes. . Mol Microbiol74:299–314 [CrossRef][PubMed]
    [Google Scholar]
  45. Weidenmaier C., Peschel A.. ( 2008;). Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nat Rev Microbiol6:276–287 [CrossRef][PubMed]
    [Google Scholar]
  46. Wolters P. J., Hildebrandt K. M., Dickie J. P., Anderson J. S.. ( 1990;). Polymer length of teichuronic acid released from cell walls of Micrococcus luteus. . J Bacteriol172:5154–5159[PubMed]
    [Google Scholar]
  47. Wörmann M. E., Corrigan R. M., Simpson P. J., Matthews S. J., Gründling A.. ( 2011;). Enzymatic activities and functional interdependencies of Bacillus subtilis lipoteichoic acid synthesis enzymes. Mol Microbiol79:566–583 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.070607-0
Loading
/content/journal/micro/10.1099/mic.0.070607-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error