1887

Abstract

An K-12 mutant deficient in -adenosylmethionine (SAM) synthesis, i.e Δ, but expressing a rickettsial SAM transporter, can grow in glucose minimal medium if provided with both SAM and methionine. It uses the externally provided ()-enantiomer of SAM as methyl donor to produce most but not all of its methionine, by methylation of homocysteine catalysed by homocysteine methyltransferase (MmuM). The Δ cells are also altered in growth and are twice as long as those of the parent strain. When starved of SAM, the mutant makes a small proportion of very long cells suggesting a role of SAM and of methylation in the onset of crosswall formation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.069682-0
2013-10-01
2020-11-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/10/2036.html?itemId=/content/journal/micro/10.1099/mic.0.069682-0&mimeType=html&fmt=ahah

References

  1. Ambartsoumian G., D’Ari R., Lin R. T., Newman E. B..( 1994;). Altered amino acid metabolism in lrp mutants of Escherichia coli K12 and their derivatives. Microbiology140:1737–1744 [CrossRef][PubMed]
    [Google Scholar]
  2. Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K. A., Tomita M., Wanner B. L., Mori H..( 2006;). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol
    [Google Scholar]
  3. Cannon L. M., Butler F. N., Wan W., Zhou Z. S..( 2002;). A stereospecific colorimetric assay for (S,S)-adenosylmethionine quantification based on thiopurine methyltransferase-catalyzed thiol methylation. Anal Biochem308:358–363 [CrossRef][PubMed]
    [Google Scholar]
  4. D’Ari R., Casadesús J..( 1998;). Underground metabolism. Bioessays20:181–186 [CrossRef][PubMed]
    [Google Scholar]
  5. Detchanamurthy S., Shanmugam K., Parkunan S. M. A., Puttananjaiah S., Somasundaram B., Subramanian K..( 2010;). Cloning and expression of S-adenosyl methionine synthetase gene in recombinant E. coli strain for large scale production of SAMe. Electron J Biotechnol13:2 [CrossRef]
    [Google Scholar]
  6. Driskell L. O., Tucker A. M., Winkler H. H., Wood D. O..( 2005;). Rickettsial metK-encoded methionine adenosyltransferase expression in an Escherichia coli metK deletion strain. J Bacteriol187:5719–5722 [CrossRef][PubMed]
    [Google Scholar]
  7. Farrar C. E., Siu K. K., Howell P. L., Jarrett J. T..( 2010;). Biotin synthase exhibits burst kinetics and multiple turnovers in the absence of inhibition by products and product-related biomolecules. Biochemistry49:9985–9996 [CrossRef][PubMed]
    [Google Scholar]
  8. Greene R. C..( 1996;). Biosynthesis of methionine. Escherichia coli and Salmonella542–560 Neidhardt F. C.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Grove T. L., Benner J. S., Radle M. I., Ahlum J. H., Landgraf B. J., Krebs C., Booker S. J..( 2011;). A radically different mechanism for S-adenosylmethionine-dependent methyltransferases. Science332:604–607 [CrossRef][PubMed]
    [Google Scholar]
  10. Hanahan D..( 1983;). Studies on transformation of Escherichia coli with plasmids. J Mol Biol166:557–580 [CrossRef][PubMed]
    [Google Scholar]
  11. Hoffman J. L..( 1986;). Chromatographic analysis of the chiral and covalent instability of S-adenosyl-l-methionine. Biochemistry25:4444–4449 [CrossRef][PubMed]
    [Google Scholar]
  12. Hunter J. S., Greene R. C., Su C. H..( 1975;). Genetic characterization of the metK locus in Escherichia coli K-12. J Bacteriol122:1144–1152[PubMed]
    [Google Scholar]
  13. Isenberg S., Newman E. B..( 1974;). Studies on l-serine deaminase in Escherichia coli K-12. J Bacteriol118:53–58[PubMed]
    [Google Scholar]
  14. Iwig D. F., Booker S. J..( 2004;). Insight into the polar reactivity of the onium chalcogen analogues of S-adenosyl-l-methionine. Biochemistry43:13496–13509 [CrossRef][PubMed]
    [Google Scholar]
  15. Keseler I. M., Collado-Vides J., Santos-Zavaleta A., Peralta-Gil M., Gama-Castro S., Muñiz-Rascado L., Bonavides-Martinez C., Paley S., Krummenacker M..& other authors ( 2011;). EcoCyc: a comprehensive database of Escherichia coli biology. Nucleic Acids Res39:Database issueD583–D590 [CrossRef][PubMed]
    [Google Scholar]
  16. Krijt J., Dutá A., Kožich V..( 2009;). Determination of S-adenosylmethionine and S-adenosylhomocysteine by LC-MS/MS and evaluation of their stability in mice tissues. J Chromatogr B Analyt Technol Biomed Life Sci877:2061–2066 [CrossRef][PubMed]
    [Google Scholar]
  17. LaMonte B. L., Hughes J. A..( 2006;). In vivo hydrolysis of S-adenosylmethionine induces the met regulon of Escherichia coli. Microbiology152:1451–1459 [CrossRef][PubMed]
    [Google Scholar]
  18. Lawrence D. A., Smith D. A., Rowbury R. J..( 1968;). Regulation of methionine synthesis in Salmonella typhimurium: mutants resistant to inhibition by analogues of methionine. Genetics58:473–492[PubMed]
    [Google Scholar]
  19. Lee L. W., Ravel J. M., Shive W..( 1966;). Multimetabolite control of a biosynthetic pathway by sequential metabolites. J Biol Chem241:5479–5480[PubMed]
    [Google Scholar]
  20. Margolin W..( 2009;). Sculpting the bacterial cell. Curr Biol19:R812–R822 [CrossRef][PubMed]
    [Google Scholar]
  21. Marinus M. G., Casadesus J..( 2009;). Roles of DNA adenine methylation in host–pathogen interactions: mismatch repair, transcriptional regulation, and more. FEMS Microbiol Rev33:488–503 [CrossRef][PubMed]
    [Google Scholar]
  22. Markham G. D., Hafner E. W., Tabor C. W., Tabor H..( 1980;). S-Adenosylmethionine synthetase from Escherichia coli.. J Biol Chem255:9082–9092[PubMed]
    [Google Scholar]
  23. Miller J. H..(editor) ( 1972;). Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Neuhierl B., Thanbichler M., Lottspeich F., Böck A..( 1999;). A family of S-methylmethionine-dependent thiol/selenol methyltransferases. Role in selenium tolerance and evolutionary relation. J Biol Chem274:5407–5414 [CrossRef][PubMed]
    [Google Scholar]
  25. Newman E. B., Budman L. I., Chan E. C., Greene R. C., Lin R. T., Woldringh C. L., D’Ari R..( 1998;). Lack of S-adenosylmethionine results in a cell division defect in Escherichia coli. J Bacteriol180:3614–3619[PubMed]
    [Google Scholar]
  26. Peng X..( 2008;). Reduced intracellular SAM can increase the expression of met gene under the SAM–MetJ mechanism in Escherichia coli. M.Sc. thesis, Concordia University;
  27. Schlenk F., Dainko J. L., Stanford S. M..( 1959;). Improved procedure for the isolation of S-adenosylmethionine and S-adenosylethionine. Arch Biochem Biophys83:28–34 [CrossRef][PubMed]
    [Google Scholar]
  28. Sekowska A., Kung H. F., Danchin A..( 2000;). Sulfur metabolism in Escherichia coli and related bacteria: facts and fiction. J Mol Microbiol Biotechnol2:145–177[PubMed]
    [Google Scholar]
  29. Shapiro S. K., Ehninger D. J..( 1966;). Methods for the analysis and preparation of adenosylmethionine and adenosylhomocysteine. Anal Biochem15:323–333 [CrossRef][PubMed]
    [Google Scholar]
  30. Stolowitz M. L., Minch M. J..( 1981;). S-adenosyl-l-methionine and S-adenosyl-l-homocysteine, an NMR study. J Am Chem Soc103:6015–6019 [CrossRef]
    [Google Scholar]
  31. Su H. S., Newman E. B..( 1991;). A novel l-serine deaminase activity in E. coli K-12. J Bacteriol173:473–480
    [Google Scholar]
  32. Thanbichler M., Neuhierl B., Böck A..( 1999;). S-methylmethionine metabolism in Escherichia coli. J Bacteriol181:662–665[PubMed]
    [Google Scholar]
  33. Tuan L. R., D’Ari R., Newman E. B..( 1990;). The leucine regulon of Escherichia coli K-12: a mutation in rblA alters expression of l-leucine-dependent metabolic operons. J Bacteriol172:4529–4535[PubMed]
    [Google Scholar]
  34. Tucker A. M., Winkler H. H., Driskell L. O., Wood D. O..( 2003;). S-adenosylmethionine transport in Rickettsia prowazekii. J Bacteriol185:3031–3035 [CrossRef][PubMed]
    [Google Scholar]
  35. Vinci C. R., Clarke S. G..( 2007;). Recognition of age-damaged (R,S)-adenosyl-l-methionine by two methyltransferases in the yeast Saccharomyces cerevisiae. J Biol Chem282:8604–8612 [CrossRef][PubMed]
    [Google Scholar]
  36. Vinci C. R., Clarke S. G..( 2010;). Homocysteine methyltransferases Mht1 and Sam4 prevent the accumulation of age-damaged (R,S)-AdoMet in the yeast Saccharomyces cerevisiae. J Biol Chem285:20526–20531 [CrossRef][PubMed]
    [Google Scholar]
  37. Wang S., Arends S. J., Weiss D. S., Newman E. B..( 2005;). A deficiency in S-adenosylmethionine synthetase interrupts assembly of the septal ring in Escherichia coli K-12. Mol Microbiol58:791–799 [CrossRef][PubMed]
    [Google Scholar]
  38. Wei Y., Newman E. B..( 2002;). Studies on the role of the metK gene product of Escherichia coli K-12. Mol Microbiol43:1651–1656 [CrossRef][PubMed]
    [Google Scholar]
  39. Zhang X., El-Hajj Z. W., Newman E..( 2010;). Deficiency in l-serine deaminase interferes with one-carbon metabolism and cell wall synthesis in Escherichia coli K-12. J Bacteriol192:5515–5525 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.069682-0
Loading
/content/journal/micro/10.1099/mic.0.069682-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error