1887

Abstract

The initiation of chromosome replication is tightly regulated in bacteria to ensure that it takes place only once per cell cycle. In many proteobacteria, this process requires the ATP-bound form of the DnaA protein. The regulatory inactivation of DnaA (RIDA) facilitates the conversion of DnaA-ATP into replication-inactive DnaA-ADP, thereby preventing overinitiation. Homologues of the HdaA protein, together with the β-clamp of the DNA polymerase (DnaN), are required for this process. Here, we used fluorescence resonance energy transfer experiments to demonstrate that HdaA interacts with DnaN in live cells. We show that a QFKLPL motif in the N-terminal region of HdaA is required for this interaction and that this motif is also needed to recruit HdaA to the subcellular location occupied by the replisome during DNA replication. An HdaA mutant protein that cannot colocalize or interact with DnaN can also not support the essential function of HdaA. These results suggest that the recruitment of HdaA to the replisome is needed during RIDA in , probably as a means to sense whether chromosome replication has initiated before DnaA becomes inactivated. In addition, we show that a conserved R145 residue located in the AAA+ domain of HdaA is also needed for the function of HdaA, although it does not affect the interaction of HdaA with DnaN . The AAA+ domain of HdaA may therefore be required during RIDA after the initial recruitment of HdaA to the replisome by DnaN.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.068577-0
2013-11-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/11/2237.html?itemId=/content/journal/micro/10.1099/mic.0.068577-0&mimeType=html&fmt=ahah

References

  1. Bastedo D. P., Marczynski G. T.. ( 2009;). CtrA response regulator binding to the Caulobacter chromosome replication origin is required during nutrient and antibiotic stress as well as during cell cycle progression. . Mol Microbiol 72:, 139–154. [CrossRef][PubMed]
    [Google Scholar]
  2. Baxter J. C., Sutton M. D.. ( 2012;). Evidence for roles of the Escherichia coli Hda protein beyond regulatory inactivation of DnaA. . Mol Microbiol 85:, 648–668. [CrossRef][PubMed]
    [Google Scholar]
  3. Brendler T., Abeles A., Austin S.. ( 1995;). A protein that binds to the P1 origin core and the oriC 13mer region in a methylation-specific fashion is the product of the host seqA gene. . EMBO J 14:, 4083–4089.[PubMed]
    [Google Scholar]
  4. Camara J. E., Breier A. M., Brendler T., Austin S., Cozzarelli N. R., Crooke E.. ( 2005;). Hda inactivation of DnaA is the predominant mechanism preventing hyperinitiation of Escherichia coli DNA replication. . EMBO Rep 6:, 736–741. [CrossRef][PubMed]
    [Google Scholar]
  5. Collier J.. ( 2012;). Regulation of chromosomal replication in Caulobacter crescentus. . Plasmid 67:, 76–87. [CrossRef][PubMed]
    [Google Scholar]
  6. Collier J., Shapiro L.. ( 2009;). Feedback control of DnaA-mediated replication initiation by replisome-associated HdaA protein in Caulobacter. . J Bacteriol 191:, 5706–5716. [CrossRef][PubMed]
    [Google Scholar]
  7. Curtis P. D., Brun Y. V.. ( 2010;). Getting in the loop: regulation of development in Caulobacter crescentus. . Microbiol Mol Biol Rev 74:, 13–41. [CrossRef][PubMed]
    [Google Scholar]
  8. Dalrymple B. P., Kongsuwan K., Wijffels G., Dixon N. E., Jennings P. A.. ( 2001;). A universal protein–protein interaction motif in the eubacterial DNA replication and repair systems. . Proc Natl Acad Sci U S A 98:, 11627–11632. [CrossRef][PubMed]
    [Google Scholar]
  9. Davey M. J., Jeruzalmi D., Kuriyan J., O’Donnell M.. ( 2002;). Motors and switches: AAA+ machines within the replisome. . Nat Rev Mol Cell Biol 3:, 826–835. [CrossRef][PubMed]
    [Google Scholar]
  10. Ditta G., Stanfield S., Corbin D., Helinski D. R.. ( 1980;). Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. . Proc Natl Acad Sci U S A 77:, 7347–7351. [CrossRef][PubMed]
    [Google Scholar]
  11. Domian I. J., Quon K. C., Shapiro L.. ( 1997;). Cell type-specific phosphorylation and proteolysis of a transcriptional regulator controls the G1-to-S transition in a bacterial cell cycle. . Cell 90:, 415–424. [CrossRef][PubMed]
    [Google Scholar]
  12. Duderstadt K. E., Berger J. M.. ( 2008;). AAA+ ATPases in the initiation of DNA replication. . Crit Rev Biochem Mol Biol 43:, 163–187. [CrossRef][PubMed]
    [Google Scholar]
  13. Ely B.. ( 1991;). Genetics of Caulobacter crescentus. . Methods Enzymol 204:, 372–384.
    [Google Scholar]
  14. Evinger M., Agabian N.. ( 1977;). Envelope-associated nucleoid from Caulobacter crescentus stalked and swarmer cells. . J Bacteriol 132:, 294–301.[PubMed]
    [Google Scholar]
  15. Fernandez-Fernandez C., Gonzalez D., Collier J.. ( 2011;). Regulation of the activity of the dual-function DnaA protein in Caulobacter crescentus. . PLoS ONE 6:, e26028. [CrossRef][PubMed]
    [Google Scholar]
  16. Fujimitsu K., Su’etsugu M., Yamaguchi Y., Mazda K., Fu N., Kawakami H., Katayama T.. ( 2008;). Modes of overinitiation, dnaA gene expression, and inhibition of cell division in a novel cold-sensitive hda mutant of Escherichia coli. . J Bacteriol 190:, 5368–5381. [CrossRef][PubMed]
    [Google Scholar]
  17. Gon S., Camara J. E., Klungsøyr H. K., Crooke E., Skarstad K., Beckwith J.. ( 2006;). A novel regulatory mechanism couples deoxyribonucleotide synthesis and DNA replication in Escherichia coli. . EMBO J 25:, 1137–1147. [CrossRef][PubMed]
    [Google Scholar]
  18. Gorbatyuk B., Marczynski G. T.. ( 2001;). Physiological consequences of blocked Caulobacter crescentus dnaA expression, an essential DNA replication gene. . Mol Microbiol 40:, 485–497. [CrossRef][PubMed]
    [Google Scholar]
  19. Jensen R. B., Wang S. C., Shapiro L.. ( 2001;). A moving DNA replication factory in Caulobacter crescentus. . EMBO J 20:, 4952–4963. [CrossRef][PubMed]
    [Google Scholar]
  20. Jonas K., Chen Y. E., Laub M. T.. ( 2011;). Modularity of the bacterial cell cycle enables independent spatial and temporal control of DNA replication. . Curr Biol 21:, 1092–1101. [CrossRef][PubMed]
    [Google Scholar]
  21. Kasho K., Katayama T.. ( 2013;). DnaA binding locus datA promotes DnaA-ATP hydrolysis to enable cell cycle-coordinated replication initiation. . Proc Natl Acad Sci U S A 110:, 936–941. [CrossRef][PubMed]
    [Google Scholar]
  22. Katayama T., Crooke E.. ( 1995;). DnaA protein is sensitive to a soluble factor and is specifically inactivated for initiation of in vitro replication of the Escherichia coli minichromosome. . J Biol Chem 270:, 9265–9271. [CrossRef][PubMed]
    [Google Scholar]
  23. Katayama T., Kubota T., Kurokawa K., Crooke E., Sekimizu K.. ( 1998;). The initiator function of DnaA protein is negatively regulated by the sliding clamp of the E. coli chromosomal replicase. . Cell 94:, 61–71. [CrossRef][PubMed]
    [Google Scholar]
  24. Katayama T., Ozaki S., Keyamura K., Fujimitsu K.. ( 2010;). Regulation of the replication cycle: conserved and diverse regulatory systems for DnaA and oriC. . Nat Rev Microbiol 8:, 163–170. [CrossRef][PubMed]
    [Google Scholar]
  25. Kato J., Katayama T.. ( 2001;). Hda, a novel DnaA-related protein, regulates the replication cycle in Escherichia coli. . EMBO J 20:, 4253–4262. [CrossRef][PubMed]
    [Google Scholar]
  26. Kentner D., Sourjik V.. ( 2009;). Dynamic map of protein interactions in the Escherichia coli chemotaxis pathway. . Mol Syst Biol 5:, 238. [CrossRef][PubMed]
    [Google Scholar]
  27. Kim Y., Kipreos E. T.. ( 2007;). The Caenorhabditis elegans replication licensing factor CDT-1 is targeted for degradation by the CUL-4/DDB-1 complex. . Mol Cell Biol 27:, 1394–1406. [CrossRef][PubMed]
    [Google Scholar]
  28. Kim P. D., Banack T., Lerman D. M., Tracy J. C., Camara J. E., Crooke E., Oliver D., Firshein W.. ( 2003;). Identification of a novel membrane-associated gene product that suppresses toxicity of a TrfA peptide from plasmid RK2 and its relationship to the DnaA host initiation protein. . J Bacteriol 185:, 1817–1824. [CrossRef][PubMed]
    [Google Scholar]
  29. Kitagawa R., Ozaki T., Moriya S., Ogawa T.. ( 1998;). Negative control of replication initiation by a novel chromosomal locus exhibiting exceptional affinity for Escherichia coli DnaA protein. . Genes Dev 12:, 3032–3043. [CrossRef][PubMed]
    [Google Scholar]
  30. Kurokawa K., Nishida S., Emoto A., Sekimizu K., Katayama T.. ( 1999;). Replication cycle-coordinated change of the adenine nucleotide-bound forms of DnaA protein in Escherichia coli. . EMBO J 18:, 6642–6652. [CrossRef][PubMed]
    [Google Scholar]
  31. Kurz M., Dalrymple B., Wijffels G., Kongsuwan K.. ( 2004;). Interaction of the sliding clamp β-subunit and Hda, a DnaA-related protein. . J Bacteriol 186:, 3508–3515. [CrossRef][PubMed]
    [Google Scholar]
  32. Leonard A. C., Grimwade J. E.. ( 2011;). Regulation of DnaA assembly and activity: taking directions from the genome. . Annu Rev Microbiol 65:, 19–35. [CrossRef][PubMed]
    [Google Scholar]
  33. López de Saro F. J., O’Donnell M.. ( 2001;). Interaction of the βsliding clamp with MutS, ligase, and DNA polymerase I. . Proc Natl Acad Sci U S A 98:, 8376–8380. [CrossRef][PubMed]
    [Google Scholar]
  34. Lu M., Campbell J. L., Boye E., Kleckner N.. ( 1994;). SeqA: a negative modulator of replication initiation in E. coli. . Cell 77:, 413–426. [CrossRef][PubMed]
    [Google Scholar]
  35. Marczynski G. T.. ( 1999;). Chromosome methylation and measurement of faithful, once and only once per cell cycle chromosome replication in Caulobacter crescentus. . J Bacteriol 181:, 1984–1993.[PubMed]
    [Google Scholar]
  36. Meisenzahl A. C., Shapiro L., Jenal U.. ( 1997;). Isolation and characterization of a xylose-dependent promoter from Caulobacter crescentus. . J Bacteriol 179:, 592–600.[PubMed]
    [Google Scholar]
  37. Messer W.. ( 2002;). The bacterial replication initiator DnaA. DnaA and oriC, the bacterial mode to initiate DNA replication. . FEMS Microbiol Rev 26:, 355–374.[PubMed]
    [Google Scholar]
  38. Miyawaki A., Tsien R. Y.. ( 2000;). Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein. . Methods Enzymol 327:, 472–500. [CrossRef][PubMed]
    [Google Scholar]
  39. Mott M. L., Berger J. M.. ( 2007;). DNA replication initiation: mechanisms and regulation in bacteria. . Nat Rev Microbiol 5:, 343–354. [CrossRef][PubMed]
    [Google Scholar]
  40. Nakamura K., Katayama T.. ( 2010;). Novel essential residues of Hda for interaction with DnaA in the regulatory inactivation of DnaA: unique roles for Hda AAA Box VI and VII motifs. . Mol Microbiol 76:, 302–317. [CrossRef][PubMed]
    [Google Scholar]
  41. Neuwald A. F., Aravind L., Spouge J. L., Koonin E. V.. ( 1999;). AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. . Genome Res 9:, 27–43.[PubMed]
    [Google Scholar]
  42. Nievera C., Torgue J. J., Grimwade J. E., Leonard A. C.. ( 2006;). SeqA blocking of DnaA-oriC interactions ensures staged assembly of the E. coli pre-RC. . Mol Cell 24:, 581–592. [CrossRef][PubMed]
    [Google Scholar]
  43. Nishitani H., Sugimoto N., Roukos V., Nakanishi Y., Saijo M., Obuse C., Tsurimoto T., Nakayama K. I., Nakayama K. et al. ( 2006;). Two E3 ubiquitin ligases, SCF-Skp2 and DDB1-Cul4, target human Cdt1 for proteolysis. . EMBO J 25:, 1126–1136. [CrossRef][PubMed]
    [Google Scholar]
  44. O’Donnell M.. ( 2006;). Replisome architecture and dynamics in Escherichia coli. . J Biol Chem 281:, 10653–10656. [CrossRef][PubMed]
    [Google Scholar]
  45. Ogura T., Whiteheart S. W., Wilkinson A. J.. ( 2004;). Conserved arginine residues implicated in ATP hydrolysis, nucleotide-sensing, and inter-subunit interactions in AAA and AAA+ ATPases. . J Struct Biol 146:, 106–112. [CrossRef][PubMed]
    [Google Scholar]
  46. Olliver A., Saggioro C., Herrick J., Sclavi B.. ( 2010;). DnaA-ATP acts as a molecular switch to control levels of ribonucleotide reductase expression in Escherichia coli. . Mol Microbiol 76:, 1555–1571. [CrossRef][PubMed]
    [Google Scholar]
  47. Quon K. C., Yang B., Domian I. J., Shapiro L., Marczynski G. T.. ( 1998;). Negative control of bacterial DNA replication by a cell cycle regulatory protein that binds at the chromosome origin. . Proc Natl Acad Sci U S A 95:, 120–125. [CrossRef][PubMed]
    [Google Scholar]
  48. Riber L., Olsson J. A., Jensen R. B., Skovgaard O., Dasgupta S., Marinus M. G., Løbner-Olesen A.. ( 2006;). Hda-mediated inactivation of the DnaA protein and dnaA gene autoregulation act in concert to ensure homeostatic maintenance of the Escherichia coli chromosome. . Genes Dev 20:, 2121–2134. [CrossRef][PubMed]
    [Google Scholar]
  49. Scholefield G., Veening J. W., Murray H.. ( 2011;). DnaA and ORC: more than DNA replication initiators. . Trends Cell Biol 21:, 188–194. [CrossRef][PubMed]
    [Google Scholar]
  50. Slater S., Wold S., Lu M., Boye E., Skarstad K., Kleckner N.. ( 1995;). E. coli SeqA protein binds oriC in two different methyl-modulated reactions appropriate to its roles in DNA replication initiation and origin sequestration. . Cell 82:, 927–936. [CrossRef][PubMed]
    [Google Scholar]
  51. Sourjik V., Berg H. C.. ( 2002;). Receptor sensitivity in bacterial chemotaxis. . Proc Natl Acad Sci U S A 99:, 123–127. [CrossRef][PubMed]
    [Google Scholar]
  52. Speck C., Weigel C., Messer W.. ( 1999;). ATP- and ADP-dnaA protein, a molecular switch in gene regulation. . EMBO J 18:, 6169–6176. [CrossRef][PubMed]
    [Google Scholar]
  53. Su’etsugu M., Takata M., Kubota T., Matsuda Y., Katayama T.. ( 2004;). Molecular mechanism of DNA replication-coupled inactivation of the initiator protein in Escherichia coli: interaction of DnaA with the sliding clamp-loaded DNA and the sliding clamp-Hda complex. . Genes Cells 9:, 509–522. [CrossRef][PubMed]
    [Google Scholar]
  54. Su’etsugu M., Shimuta T. R., Ishida T., Kawakami H., Katayama T.. ( 2005;). Protein associations in DnaA-ATP hydrolysis mediated by the Hda-replicase clamp complex. . J Biol Chem 280:, 6528–6536. [CrossRef][PubMed]
    [Google Scholar]
  55. Su’etsugu M., Nakamura K., Keyamura K., Kudo Y., Katayama T.. ( 2008;). Hda monomerization by ADP binding promotes replicase clamp-mediated DnaA-ATP hydrolysis. . J Biol Chem 283:, 36118–36131. [CrossRef][PubMed]
    [Google Scholar]
  56. Taylor J. A., Ouimet M. C., Wargachuk R., Marczynski G. T.. ( 2011;). The Caulobacter crescentus chromosome replication origin evolved two classes of weak DnaA binding sites. . Mol Microbiol 82:, 312–326. [CrossRef][PubMed]
    [Google Scholar]
  57. Thanbichler M., Iniesta A. A., Shapiro L.. ( 2007;). A comprehensive set of plasmids for vanillate- and xylose-inducible gene expression in Caulobacter crescentus. . Nucleic Acids Res 35:, e137. [CrossRef][PubMed]
    [Google Scholar]
  58. West L., Yang D., Stephens C.. ( 2002;). Use of the Caulobacter crescentus genome sequence to develop a method for systematic genetic mapping. . J Bacteriol 184:, 2155–2166. [CrossRef][PubMed]
    [Google Scholar]
  59. Wouters F. S., Bastiaens P. I.. ( 2001;). Imaging protein–protein interactions by fluorescence resonance energy transfer (FRET) microscopy. . Curr Protoc Protein Sci Chapter 19, Unit19 15.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.068577-0
Loading
/content/journal/micro/10.1099/mic.0.068577-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error