1887

Abstract

Mutants of the wheat pathogenic fungus lacking G-protein subunits display a variety of phenotypes including melanization defects, primary metabolic changes and a decreased ability to sporulate. To better understand the causes of these phenotypes, strains lacking a Gα, Gβ or Gγ subunit were compared to a wild-type strain using metabolomics. Agar plate growth at 22 °C revealed a number of fundamental metabolic changes and highlighted the influential role of these proteins in glucose utilization. A further characterization of the mutants was undertaken during prolonged storage at 4 °C, conditions known to induce sporulation in these sporulation-deficient signalling mutants. The abundance of several compounds positively correlated with the onset of sporulation including the dissacharide trehalose, the tryptophan degradation product tryptamine and the secondary metabolite alternariol; metabolites all previously associated with sporulation. Several other compounds decreased or were absent during sporulation. The levels of one such compound (Unknown_35.27_2194_319) decreased from being one of the more abundant compounds to absence during pycnidial maturation. This study has shed light on the role of G-protein subunits in primary metabolism during vegetative growth and exploited the cold-induced sporulation phenomenon in these mutants to identify some key metabolic changes that occur during asexual reproduction.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.067009-0
2013-09-01
2020-12-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/9/1972.html?itemId=/content/journal/micro/10.1099/mic.0.067009-0&mimeType=html&fmt=ahah

References

  1. Bailey A., Mueller E., Bowyer P.. ( 2000;). Ornithine decarboxylase of Stagonospora (Septoria) nodorum is required for virulence toward wheat. J Biol Chem275:14242–14247 [CrossRef][PubMed]
    [Google Scholar]
  2. Bringans S., Hane J. K., Casey T., Tan K. C., Lipscombe R., Solomon P. S., Oliver R. P.. ( 2009;). Deep proteogenomics; high throughput gene validation by multidimensional liquid chromatography and mass spectrometry of proteins from the fungal wheat pathogen Stagonospora nodorum . BMC Bioinformatics10:301 [CrossRef][PubMed]
    [Google Scholar]
  3. Casey T., Solomon P. S., Bringans S., Tan K.-C., Oliver R. P., Lipscombe R.. ( 2010;). Quantitative proteomic analysis of G-protein signalling in Stagonospora nodorum using isobaric tags for relative and absolute quantification. Proteomics10:38–47 [CrossRef][PubMed]
    [Google Scholar]
  4. Caspi R., Foerster H., Fulcher C. A., Kaipa P., Krummenacker M., Latendresse M., Paley S., Rhee S. Y., Shearer A. G.. & other authors ( 2008;). The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res36:Database issueD623–D631 [CrossRef][PubMed]
    [Google Scholar]
  5. Fang X., Yano S., Inoue H., Sawayama S.. ( 2008;). Lactose enhances cellulase production by the filamentous fungus Acremonium cellulolyticus . J Biosci Bioeng106:115–120 [CrossRef]
    [Google Scholar]
  6. Foreman P. K., Brown D., Dankmeyer L., other authors. ( 2003;). Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei . J Biol Chem278:31988–31997[PubMed][CrossRef]
    [Google Scholar]
  7. Gummer J. P. A., Krill C., Du Fall L., Waters O. D. C., Trengove R. D., Oliver R. P., Solomon P. S.. ( 2011;). Metabolomics protocols for filamentous fungi. Plant Fungal Pathogens Methods in Molecular Biology 237–254 Bolton M. D., Thomma B. P. H. J.. New York: Humana Press;
    [Google Scholar]
  8. Gummer J. P. A., Trengove R. D., Oliver R. P., Solomon P. S.. ( 2012;). A comparative analysis of the heterotrimeric G-protein Gα, Gβ and Gγ subunits in the wheat pathogen Stagonospora nodorum . BMC Microbiol12:131 [CrossRef][PubMed]
    [Google Scholar]
  9. IpCho S. V. S., Tan K. C., Koh G., Gummer J., Oliver R. P., Trengove R. D., Solomon P. S.. ( 2010;). The transcription factor StuA regulates central carbon metabolism, mycotoxin production, and effector gene expression in the wheat pathogen Stagonospora nodorum . Eukaryot Cell9:1100–1108 [CrossRef][PubMed]
    [Google Scholar]
  10. Jennings D. B., Ehrenshaft M., Pharr D. M., Williamson J. D.. ( 1998;). Roles for mannitol and mannitol dehydrogenase in active oxygen-mediated plant defense. Proc Natl Acad Sci U S A95:15129–15133 [CrossRef][PubMed]
    [Google Scholar]
  11. Jennings D. B., Daub M. E., Pharr D. M., Williamson J. D.. ( 2002;). Constitutive expression of a celery mannitol dehydrogenase in tobacco enhances resistance to the mannitol-secreting fungal pathogen Alternaria alternata . Plant J32:41–49 [CrossRef][PubMed]
    [Google Scholar]
  12. Kim J. D., Kaiser K., Larive C. K., Borkovich K. A.. ( 2011;). Use of 1H nuclear magnetic resonance to measure intracellular metabolite levels during growth and asexual sporulation in Neurospora crassa . Eukaryot Cell10:820–831 [CrossRef][PubMed]
    [Google Scholar]
  13. Kraakman L., Lemaire K., Ma P., Teunissen A. W., Donaton M. C. V., Van Dijck P., Winderickx J., de Winde J. H., Thevelein J. M.. ( 1999;). A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Mol Microbiol32:1002–1012 [CrossRef][PubMed]
    [Google Scholar]
  14. Lafon A., Seo J. A., Han K. H., Yu J. H., d’Enfert C.. ( 2005;). The heterotrimeric G-protein GanB(α)-SfaD(β)-GpgA(γ) is a carbon source sensor involved in early cAMP-dependent germination in Aspergillus nidulans . Genetics171:71–80 [CrossRef][PubMed]
    [Google Scholar]
  15. Li L., Borkovich K. A.. ( 2006;). GPR-4 is a predicted G-protein-coupled receptor required for carbon source-dependent asexual growth and development in Neurospora crassa . Eukaryot Cell5:1287–1300 [CrossRef][PubMed]
    [Google Scholar]
  16. Lowe R. G., Lord M., Rybak K., Trengove R. D., Oliver R. P., Solomon P. S.. ( 2008;). A metabolomic approach to dissecting osmotic stress in the wheat pathogen Stagonospora nodorum . Fungal Genet Biol45:1479–1486 [CrossRef][PubMed]
    [Google Scholar]
  17. Lowe R. G. T., Lord M., Rybak K., Trengove R. D., Oliver R. P., Solomon P. S.. ( 2009;). Trehalose biosynthesis is involved in sporulation of Stagonospora nodorum . Fungal Genet Biol46:381–389 [CrossRef][PubMed]
    [Google Scholar]
  18. Oliver R. P., Solomon P. S.. ( 2010;). New developments in pathogenicity and virulence of necrotrophs. Curr Opin Plant Biol13:415–419 [CrossRef][PubMed]
    [Google Scholar]
  19. Oliver R. P., Friesen T. L., Faris J. D., Solomon P. S.. ( 2012;). Stagonospora nodorum: from pathology to genomics and host resistance. Annu Rev Phytopathol50:23–43 [CrossRef][PubMed]
    [Google Scholar]
  20. Seiboth B., Pakdaman B. S., Hartl L., Kubicek C. P.. ( 2007;). Lactose metabolism in filamentous fungi: how to deal with an unknown substrate. Fungal Biol Rev21:42–48 [CrossRef]
    [Google Scholar]
  21. Solomon P. S., Tan K. C., Sanchez P., Cooper R. M., Oliver R. P.. ( 2004;). The disruption of a Gα subunit sheds new light on the pathogenicity of Stagonospora nodorum on wheat. Mol Plant Microbe Interact17:456–466 [CrossRef][PubMed]
    [Google Scholar]
  22. Solomon P. S., Tan K. C., Oliver R. P.. ( 2005;). Mannitol 1-phosphate metabolism is required for sporulation in planta of the wheat pathogen Stagonospora nodorum . Mol Plant Microbe Interact18:110–115 [CrossRef][PubMed]
    [Google Scholar]
  23. Solomon P. S., Lowe R. G. T., Tan K. C., Waters O. D. C., Oliver R. P.. ( 2006a;). Stagonospora nodorum: cause of stagonospora nodorum blotch of wheat. Mol Plant Pathol7:147–156 [CrossRef][PubMed]
    [Google Scholar]
  24. Solomon P. S., Rybak K., Trengove R. D., Oliver R. P.. ( 2006b;). Investigating the role of calcium/calmodulin-dependent protein kinases in Stagonospora nodorum . Mol Microbiol62:367–381 [CrossRef][PubMed]
    [Google Scholar]
  25. Solomon P. S., Waters O. D. C., Jörgens C. I., Lowe R. G. T., Rechberger J., Trengove R. D., Oliver R. P.. ( 2006c;). Mannitol is required for asexual sporulation in the wheat pathogen Stagonospora nodorum (glume blotch). Biochem J399:231–239 [CrossRef][PubMed]
    [Google Scholar]
  26. Solomon P. S., Waters O. D. C., Oliver R. P.. ( 2007;). Decoding the mannitol enigma in filamentous fungi. Trends Microbiol15:257–262 [CrossRef][PubMed]
    [Google Scholar]
  27. Tan K. C., Heazlewood J. L., Millar A. H., Thomson G., Oliver R. P., Solomon P. S.. ( 2008;). A signaling-regulated, short-chain dehydrogenase of Stagonospora nodorum regulates asexual development. Eukaryot Cell7:1916–1929 [CrossRef][PubMed]
    [Google Scholar]
  28. Tan K. C., Heazlewood J. L., Millar A. H., Oliver R. P., Solomon P. S.. ( 2009a;). Proteomic identification of extracellular proteins regulated by the Gna1 Gα subunit in Stagonospora nodorum . Mycol Res113:523–531 [CrossRef][PubMed]
    [Google Scholar]
  29. Tan K. C., Trengove R. D., Maker G. L., Oliver R. P., Solomon P. S.. ( 2009b;). Metabolite profiling identifies the mycotoxin alternariol in the pathogen Stagonospora nodorum . Metabolomics5:330–335 [CrossRef]
    [Google Scholar]
  30. Wilson R. A., Jenkinson J. M., Gibson R. P., Littlechild J. A., Wang Z. Y., Talbot N. J.. ( 2007;). Tps1 regulates the pentose phosphate pathway, nitrogen metabolism and fungal virulence. EMBO J26:3673–3685 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.067009-0
Loading
/content/journal/micro/10.1099/mic.0.067009-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error