1887

Abstract

The genus comprises a genetically distinct taxon related to other members of the family . It consists of bacteria differing strongly in their biochemical and physiological features, natural habitats, and pathogenic properties. Intrinsic resistance to cationic antimicrobial peptides (CAMPs) is a specific property of the genus In particular, , an important pathogen of the catfish () aquaculture and the causative agent of a fatal systemic infection, is highly resistant to CAMPs. mechanisms of resistance to CAMPs are unknown. We hypothesized that lipopolysaccharide (LPS) plays a role in both virulence and resistance to CAMPs. The putative genes related to LPS oligo-polysaccharide (O-PS) synthesis were in-frame deleted. Individual deletions of , and eliminated synthesis of the O-PS, causing auto-agglutination, rough colonies, biofilm-like formation and motility defects. Deletion of , the gene that encodes the UDP-glucose dehydrogenase enzyme responsible for synthesis of UDP-glucuronic acid, causes sensitivity to CAMPs, indicating that UDP-glucuronic acid and its derivatives are related to CAMP intrinsic resistance. OP-S mutants showed different levels of attenuation, colonization of lymphoid tissues and immune protection in zebrafish () and catfish. Orally inoculated catfish with O-PS mutant strains presented different degrees of gut inflammation and colonization of lymphoid tissues. Here we conclude that intrinsic resistance to CAMPs is mediated by Ugd enzyme, which has a pleiotropic effect in influencing LPS synthesis, motility, agglutination, fish gut inflammation and virulence.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.066639-0
2013-07-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/7/1471.html?itemId=/content/journal/micro/10.1099/mic.0.066639-0&mimeType=html&fmt=ahah

References

  1. Aguirre A., Lejona S., Véscovi E. G., Soncini F. C.. ( 2000;). Phosphorylated PmrA interacts with the promoter region of ugd in Salmonella enterica serovar typhimurium. J Bacteriol182:3874–3876 [CrossRef][PubMed]
    [Google Scholar]
  2. Ali S. A., Sarto I., Steinkasserer A.. ( 1997;). Production of PCR mimics for any semiquantitative PCR application. Biotechniques22:1060–1062[PubMed]
    [Google Scholar]
  3. Bader M. W., Sanowar S., Daley M. E., Schneider A. R., Cho U., Xu W., Klevit R. E., Le Moual H., Miller S. I.. ( 2005;). Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell122:461–472 [CrossRef][PubMed]
    [Google Scholar]
  4. Banemann A., Deppisch H., Gross R.. ( 1998;). The lipopolysaccharide of Bordetella bronchiseptica acts as a protective shield against antimicrobial peptides. Infect Immun66:5607–5612[PubMed]
    [Google Scholar]
  5. Bao B., Peatman E., Li P., He C., Liu Z.. ( 2005;). Catfish hepcidin gene is expressed in a wide range of tissues and exhibits tissue-specific upregulation after bacterial infection. Dev Comp Immunol29:939–950 [CrossRef][PubMed]
    [Google Scholar]
  6. Bao B., Peatman E., Xu P., Li P., Zeng H., He C., Liu Z.. ( 2006;). The catfish liver-expressed antimicrobial peptide 2 (LEAP-2) gene is expressed in a wide range of tissues and developmentally regulated. Mol Immunol43:367–377 [CrossRef][PubMed]
    [Google Scholar]
  7. Berczi I., Bertók L., Bereznai T.. ( 1966;). Comparative studies on the toxicity of Escherichia coli lipopolysaccharide endotoxin in various animal species. Can J Microbiol12:1070–1071 [CrossRef][PubMed]
    [Google Scholar]
  8. Bertani G.. ( 1951;). Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli . J Bacteriol62:293–300[PubMed]
    [Google Scholar]
  9. Bertolini J. M., Cipriano R. C., Pyle S. W., McLaughlin J. J.. ( 1990;). Serological investigation of the fish pathogen Edwardsiella ictaluri, cause of enteric septicemia of catfish. J Wildl Dis26:246–252[PubMed][CrossRef]
    [Google Scholar]
  10. Bly J. E., Clem L. W.. ( 1991;). Temperature-mediated processes in teleost immunity: in vitro immunosuppression induced by in vivo low temperature in channel catfish. Vet Immunol Immunopathol28:365–377 [CrossRef][PubMed]
    [Google Scholar]
  11. Booth N. J., Beekman J. B., Thune R. L.. ( 2009;). Edwardsiella ictaluri encodes an acid-activated urease that is required for intracellular replication in channel catfish (Ictalurus punctatus) macrophages. Appl Environ Microbiol75:6712–6720 [CrossRef][PubMed]
    [Google Scholar]
  12. Bowser P. R., Plumb J. A.. ( 1980;). Fish cell lines: establishment of a line from ovaries of channel catfish. In Vitro16:365–368 [CrossRef][PubMed]
    [Google Scholar]
  13. Breazeale S. D., Ribeiro A. A., Raetz C. R.. ( 2002;). Oxidative decarboxylation of UDP-glucuronic acid in extracts of polymyxin-resistant Escherichia coli. Origin of lipid A species modified with 4-amino-4-deoxy-l-arabinose. J Biol Chem277:2886–2896 [CrossRef][PubMed]
    [Google Scholar]
  14. Brogden K. A.. ( 2005;). Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?. Nat Rev Microbiol3:238–250 [CrossRef][PubMed]
    [Google Scholar]
  15. Chakraborty S., Li M., Chatterjee C., Sivaraman J., Leung K. Y., Mok Y. K.. ( 2010;). Temperature and Mg2+ sensing by a novel PhoP-PhoQ two-component system for regulation of virulence in Edwardsiella tarda . J Biol Chem285:38876–38888 [CrossRef][PubMed]
    [Google Scholar]
  16. Chandler D. E., Roberson R. W.. ( 2009;). Bioimaging: Current Concepts in Light and Electron Microscopy Sudbury, MA: Jones and Bartlett Publishers;
    [Google Scholar]
  17. Clerton P., Troutaud D., Deschaux P.. ( 1998;). The chemiluminescence response of leucocytes isolated from the gut of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol8:73–76 [CrossRef]
    [Google Scholar]
  18. CLSI, Clinical and Laboratory Standards Institute. (2005a).
  19. CLSI, Clinical and Laboratory Standards Institute. (2005b).
  20. De Soyza A., Ellis C. D., Khan C. M., Corris P. A., Demarco de Hormaeche R.. ( 2004;). Burkholderia cenocepacia lipopolysaccharide, lipid A, and proinflammatory activity. Am J Respir Crit Care Med170:70–77 [CrossRef][PubMed]
    [Google Scholar]
  21. Dunham R. A., Warr G. W., Nichols A., Duncan P. L., Argue B., Middleton D., Kucuktas H.. ( 2002;). Enhanced bacterial disease resistance of transgenic channel catfish Ictalurus punctatus possessing cecropin genes. Mar Biotechnol (NY)4:338–344 [CrossRef][PubMed]
    [Google Scholar]
  22. Edwards R. A., Keller L. H., Schifferli D. M.. ( 1998;). Improved allelic exchange vectors and their use to analyze 987P fimbria gene expression. Gene207:149–157 [CrossRef][PubMed]
    [Google Scholar]
  23. Ernst R. K., Guina T., Miller S. I.. ( 1999;). How intracellular bacteria survive: surface modifications that promote resistance to host innate immune responses. J Infect Dis179:Suppl 2S326–S330 [CrossRef][PubMed]
    [Google Scholar]
  24. Farnaud S., Spiller C., Moriarty L. C., Patel A., Gant V., Odell E. W., Evans R. W.. ( 2004;). Interactions of lactoferricin-derived peptides with LPS and antimicrobial activity. FEMS Microbiol Lett233:193–199 [CrossRef][PubMed]
    [Google Scholar]
  25. Ganz T.. ( 2003;). The role of antimicrobial peptides in innate immunity. Integr Comp Biol43:300–304 [CrossRef][PubMed]
    [Google Scholar]
  26. Gunn J. S., Hohmann E. L., Miller S. I.. ( 1996;). Transcriptional regulation of Salmonella virulence: a PhoQ periplasmic domain mutation results in increased net phosphotransfer to PhoP. J Bacteriol178:6369–6373[PubMed]
    [Google Scholar]
  27. Guo L., Lim K. B., Gunn J. S., Bainbridge B., Darveau R. P., Hackett M., Miller S. I.. ( 1997;). Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ . Science276:250–253 [CrossRef][PubMed]
    [Google Scholar]
  28. Guo L., Lim K. B., Poduje C. M., Daniel M., Gunn J. S., Hackett M., Miller S. I.. ( 1998;). Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell95:189–198 [CrossRef][PubMed]
    [Google Scholar]
  29. Helander I. M., Kilpeläinen I., Vaara M.. ( 1994;). Increased substitution of phosphate groups in lipopolysaccharides and lipid A of the polymyxin-resistant pmrA mutants of Salmonella typhimurium: a 31P-NMR study. Mol Microbiol11:481–487 [CrossRef][PubMed]
    [Google Scholar]
  30. Hitchcock P. J., Brown T. M.. ( 1983;). Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J Bacteriol154:269–277[PubMed]
    [Google Scholar]
  31. Iliev D. B., Roach J. C., Mackenzie S., Planas J. V., Goetz F. W.. ( 2005;). Endotoxin recognition: in fish or not in fish?. FEBS Lett579:6519–6528 [CrossRef][PubMed]
    [Google Scholar]
  32. Kato A., Latifi T., Groisman E. A.. ( 2003;). Closing the loop: the PmrA/PmrB two-component system negatively controls expression of its posttranscriptional activator PmrD. Proc Natl Acad Sci U S A100:4706–4711 [CrossRef][PubMed]
    [Google Scholar]
  33. Knirel Y. A., Dentovskaya S. V., Bystrova O. V., Kocharova N. A., Senchenkova S. N., Shaikhutdinova R. Z., Titareva G. M., Bakhteeva I. V., Lindner B. et al. ( 2007;). Relationship of the lipopolysaccharide structure of Yersinia pestis to resistance to antimicrobial factors. Adv Exp Med Biol603:88–96 [CrossRef][PubMed]
    [Google Scholar]
  34. Kox L. F., Wösten M. M., Groisman E. A.. ( 2000;). A small protein that mediates the activation of a two-component system by another two-component system. EMBO J19:1861–1872 [CrossRef][PubMed]
    [Google Scholar]
  35. Lawrence M. L., Banes M. M., Azadi P., Reeks B. Y.. ( 2003;). The Edwardsiella ictaluri O polysaccharide biosynthesis gene cluster and the role of O polysaccharide in resistance to normal catfish serum and catfish neutrophils. Microbiology149:1409–1421 [CrossRef][PubMed]
    [Google Scholar]
  36. Llobet E., Tomás J. M., Bengoechea J. A.. ( 2008;). Capsule polysaccharide is a bacterial decoy for antimicrobial peptides. Microbiology154:3877–3886 [CrossRef][PubMed]
    [Google Scholar]
  37. Lv Y., Zheng J., Yang M., Wang Q., Zhang Y.. ( 2012;). An Edwardsiella tarda mutant lacking UDP-glucose dehydrogenase shows pleiotropic phenotypes, attenuated virulence, and potential as a vaccine candidate. Vet Microbiol160:506–512 [CrossRef][PubMed]
    [Google Scholar]
  38. McPhee J. B., Lewenza S., Hancock R. E.. ( 2003;). Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa . Mol Microbiol50:205–217 [CrossRef][PubMed]
    [Google Scholar]
  39. Merkle R. K., Poppe I.. ( 1994;). Carbohydrate composition analysis of glycoconjugates by gas-liquid chromatography/mass spectrometry. Methods Enzymol230:1–15 [CrossRef][PubMed]
    [Google Scholar]
  40. Muyembe T., Vandepitte J., Desmyter J.. ( 1973;). Natural colistin resistance in Edwardsiella tarda . Antimicrob Agents Chemother4:521–524 [CrossRef][PubMed]
    [Google Scholar]
  41. Nummila K., Kilpeläinen I., Zähringer U., Vaara M., Helander I. M.. ( 1995;). Lipopolysaccharides of polymyxin B-resistant mutants of Escherichia coli are extensively substituted by 2-aminoethyl pyrophosphate and contain aminoarabinose in lipid A. Mol Microbiol16:271–278 [CrossRef][PubMed]
    [Google Scholar]
  42. Ortega X. P., Cardona S. T., Brown A. R., Loutet S. A., Flannagan R. S., Campopiano D. J., Govan J. R., Valvano M. A.. ( 2007;). A putative gene cluster for aminoarabinose biosynthesis is essential for Burkholderia cenocepacia viability. J Bacteriol189:3639–3644 [CrossRef][PubMed]
    [Google Scholar]
  43. Panangala V. S., Russo R., van Santen V. L., Wolfe K. G., Klesius P. H.. ( 2009;). Organization and sequence of four flagellin-encoding genes of Edwardsiella ictaluri . Aquaculture Res40:1135–1147 [CrossRef]
    [Google Scholar]
  44. Patrzykat A., Friedrich C. L., Zhang L., Mendoza V., Hancock R. E.. ( 2002;). Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli . Antimicrob Agents Chemother46:605–614 [CrossRef][PubMed]
    [Google Scholar]
  45. Peschel A., Sahl H. G.. ( 2006;). The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol4:529–536 [CrossRef][PubMed]
    [Google Scholar]
  46. Petrie-Hanson L., Romano C. L., Mackey R. B., Khosravi P., Hohn C. M., Boyle C. R.. ( 2007;). Evaluation of zebrafish Danio rerio as a model for enteric septicemia of catfish (ESC). J Aquat Anim Health19:151–158 [CrossRef][PubMed]
    [Google Scholar]
  47. Pohlenz C., Buentello A., Mwangi W., Gatlin D. M. III. ( 2012;). Arginine and glutamine supplementation to culture media improves the performance of various channel catfish immune cells. Fish Shellfish Immunol32:762–768 [CrossRef][PubMed]
    [Google Scholar]
  48. Pridgeon J. W., Mu X., Klesius P. H.. ( 2012;). Expression profiles of seven channel catfish antimicrobial peptides in response to Edwardsiella ictaluri infection. J Fish Dis35:227–237 [CrossRef][PubMed]
    [Google Scholar]
  49. Raetz C. R., Whitfield C.. ( 2002;). Lipopolysaccharide endotoxins. Annu Rev Biochem71:635–700 [CrossRef][PubMed]
    [Google Scholar]
  50. Raetz C. R., Guan Z., Ingram B. O., Six D. A., Song F., Wang X., Zhao J.. ( 2009;). Discovery of new biosynthetic pathways: the lipid A story. J Lipid Res50:SupplS103–S108 [CrossRef][PubMed]
    [Google Scholar]
  51. Raetzsch C. F., Brooks N. L., Alderman J. M., Moore K. S., Hosick P. A., Klebanov S., Akira S., Bear J. E., Baldwin A. S. et al. ( 2009;). Lipopolysaccharide inhibition of glucose production through the Toll-like receptor-4, myeloid differentiation factor 88, and nuclear factor κb pathway. Hepatology50:592–600 [CrossRef][PubMed]
    [Google Scholar]
  52. Rebeil R., Ernst R. K., Gowen B. B., Miller S. I., Hinnebusch B. J.. ( 2004;). Variation in lipid A structure in the pathogenic yersiniae. Mol Microbiol52:1363–1373 [CrossRef][PubMed]
    [Google Scholar]
  53. Reinhardt J. F., Fowlston S., Jones J., George W. L.. ( 1985;). Comparative in vitro activities of selected antimicrobial agents against Edwardsiella tarda . Antimicrob Agents Chemother27:966–967 [CrossRef][PubMed]
    [Google Scholar]
  54. Roland K., Curtiss R. III, Sizemore D.. ( 1999;). Construction and evaluation of a Δcya Δcrp Salmonella typhimurium strain expressing avian pathogenic Escherichia coli O78 LPS as a vaccine to prevent airsacculitis in chickens. Avian Dis43:429–441 [CrossRef][PubMed]
    [Google Scholar]
  55. Santander, J. & Curtiss, R., III (2010).Edwardsiella ictaluri6th International Symposium on Aquatic Animal Healthhttp://aquaticpath.phhp.ufl.edu/isaah6/Oral.html#S11
  56. Santander J., Wanda S. Y., Nickerson C. A., Curtiss R. III. ( 2007;). Role of RpoS in fine-tuning the synthesis of Vi capsular polysaccharide in Salmonella enterica serotype Typhi. Infect Immun75:1382–1392 [CrossRef][PubMed]
    [Google Scholar]
  57. Santander J., Xin W., Yang Z., Curtiss R. III. ( 2010;). The aspartate-semialdehyde dehydrogenase of Edwardsiella ictaluri and its use as balanced-lethal system in fish vaccinology. PLoS ONE5:e15944 [CrossRef][PubMed]
    [Google Scholar]
  58. Santander J., Mitra A., Curtiss R. III. ( 2011;). Phenotype, virulence and immunogenicity of Edwardsiella ictaluri cyclic adenosine 3′,5′-monophosphate receptor protein (Crp) mutants in catfish host. Fish Shellfish Immunol31:1142–1153 [CrossRef][PubMed]
    [Google Scholar]
  59. Santander J., Golden G., Wanda S. Y., Curtiss R. III. ( 2012;). Fur-regulated iron uptake system of Edwardsiella ictaluri and its influence on pathogenesis and immunogenicity in the catfish host. Infect Immun80:2689–2703 [CrossRef][PubMed]
    [Google Scholar]
  60. Secombes C. J.. ( 1990;) Isolation of salmonid macrophages and analysis of their killing activity. Techniques in Fish Immunology137e54 Stolen J. S., Fletcher T. C., Anderson D. P., Roberson B. S., van Muiswinkel W. B.. Fair Haven, NJ: SOS Publications;
    [Google Scholar]
  61. Shoemaker C. A., Klesius P. H., Plumb J. A.. ( 1997;). Killing of Edwardsiella ictaluri by macrophages from channel catfish immune and susceptible to enteric septicemia of catfish. Vet Immunol Immunopathol58:181–190 [CrossRef][PubMed]
    [Google Scholar]
  62. Shoemaker C. A., Klesius P. H., Arias C. R., Evans J. J.. ( 2009;) Uses of modified live vaccines in the aquaculture. J World Aqua Soc5:573e85
    [Google Scholar]
  63. Shotts E. B., Waltman W. D. II. ( 1990;). A medium for the selective isolation of Edwardsiella ictaluri . J Wildl Dis26:214–218[PubMed][CrossRef]
    [Google Scholar]
  64. Silipo A., Molinaro A., Cescutti P., Bedini E., Rizzo R., Parrilli M., Lanzetta R.. ( 2005;). Complete structural characterization of the lipid A fraction of a clinical strain of B. cepacia genomovar I lipopolysaccharide. Glycobiology15:561–570 [CrossRef][PubMed]
    [Google Scholar]
  65. Sizemore D. R., Elsinghorst E. A., Eck L. C., Branstrom A. A., Hoover D. L., Warren R. L., Rubin F. A.. ( 1997;). Interaction of Salmonella typhi strains with cultured human monocyte-derived macrophages. Infect Immun65:309–312[PubMed]
    [Google Scholar]
  66. Skurnik M., Venho R., Bengoechea J. A., Moriyón I.. ( 1999;). The lipopolysaccharide outer core of Yersinia enterocolitica serotype O : 3 is required for virulence and plays a role in outer membrane integrity. Mol Microbiol31:1443–1462 [CrossRef][PubMed]
    [Google Scholar]
  67. Stock I., Wiedemann B.. ( 2001;). Natural antibiotic susceptibilities of Edwardsiella tarda, E. ictaluri, and E. hoshinae . Antimicrob Agents Chemother45:2245–2255 [CrossRef][PubMed]
    [Google Scholar]
  68. Strominger J. L.. ( 1957;). Microbial uridine-5′-pyrophosphate N-acetylamino sugar compounds. I. Biology of the penicillin-induced accumulation. J Biol Chem224:509–523[PubMed]
    [Google Scholar]
  69. Swain P., Nayak S. K., Nanda P. K., Dash S.. ( 2008;). Biological effects of bacterial lipopolysaccharide (endotoxin) in fish: a review. Fish Shellfish Immunol25:191–201 [CrossRef][PubMed]
    [Google Scholar]
  70. Tatner M. F., Horne M. T.. ( 1983;). Susceptibility and immunity to Vibrio anguillarum in post-hatching rainbow trout fry, Salmo gairdneri Richardson 1836. Dev Comp Immunol7:465–472 [CrossRef][PubMed]
    [Google Scholar]
  71. Tran A. X., Lester M. E., Stead C. M., Raetz C. R., Maskell D. J., McGrath S. C., Cotter R. J., Trent M. S.. ( 2005;). Resistance to the antimicrobial peptide polymyxin requires myristoylation of Escherichia coli and Salmonella typhimurium lipid A. J Biol Chem280:28186–28194 [CrossRef][PubMed]
    [Google Scholar]
  72. Trent M. S., Ribeiro A. A., Lin S., Cotter R. J., Raetz C. R.. ( 2001;). An inner membrane enzyme in Salmonella and Escherichia coli that transfers 4-amino-4-deoxy-l-arabinose to lipid A: induction on polymyxin-resistant mutants and role of a novel lipid-linked donor. J Biol Chem276:43122–43131 [CrossRef][PubMed]
    [Google Scholar]
  73. Tsai C. M., Frasch C. E.. ( 1982;). A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem119:115–119 [CrossRef][PubMed]
    [Google Scholar]
  74. Vaara M., Vaara T., Jensen M., Helander I., Nurminen M., Rietschel E. T., Mäkelä P. H.. ( 1981;). Characterization of the lipopolysaccharide from the polymyxin-resistant pmrA mutants of Salmonella typhimurium . FEBS Lett129:145–149 [CrossRef][PubMed]
    [Google Scholar]
  75. Vinogradov E., Nossova L., Perry M. B., Kay W. W.. ( 2005;). The structure of the antigenic O-polysaccharide of the lipopolysaccharide of Edwardsiella ictaluri strain MT104. Carbohydr Res340:1509–1513 [CrossRef][PubMed]
    [Google Scholar]
  76. Wang Q., Wang Y., Xu P., Liu Z.. ( 2006;). NK-lysin of channel catfish: gene triplication, sequence variation, and expression analysis. Mol Immunol43:1676–1686 [CrossRef][PubMed]
    [Google Scholar]
  77. Whitfield C.. ( 2006;). Biosynthesis and assembly of capsular polysaccharides in Escherichia coli . Annu Rev Biochem75:39–68 [CrossRef][PubMed]
    [Google Scholar]
  78. Winfield M. D., Latifi T., Groisman E. A.. ( 2005;). Transcriptional regulation of the 4-amino-4-deoxy-l-arabinose biosynthetic genes in Yersinia pestis . J Biol Chem280:14765–14772 [CrossRef][PubMed]
    [Google Scholar]
  79. Wösten M. M., Groisman E. A.. ( 1999;). Molecular characterization of the PmrA regulon. J Biol Chem274:27185–27190 [CrossRef][PubMed]
    [Google Scholar]
  80. Xu P., Bao B., He Q., Peatman E., He C., Liu Z.. ( 2005;). Characterization and expression analysis of bactericidal permeability-increasing protein (BPI) antimicrobial peptide gene from channel catfish Ictalurus punctatus . Dev Comp Immunol29:865–878 [CrossRef][PubMed]
    [Google Scholar]
  81. Yi E. C., Hackett M.. ( 2000;). Rapid isolation method for lipopolysaccharide and lipid A from gram-negative bacteria. Analyst (Lond)125:651–656 [CrossRef][PubMed]
    [Google Scholar]
  82. Zanetti M.. ( 2004;). Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol75:39–48 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.066639-0
Loading
/content/journal/micro/10.1099/mic.0.066639-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error