1887

Abstract

Group B (GBS) remains the leading cause of early onset sepsis among term infants. Evasion of innate immune defences is critical to neonatal GBS disease pathogenesis. Effectors of innate immunity, as well as numerous antibiotics, frequently target the peptidoglycan layer of the Gram-positive bacterial cell wall. The intramembrane-sensing histidine kinase (IM-HK) class of two-component regulatory systems has been identified as important to the Gram-positive response to cell wall stress. We have characterized the GBS homologue of LiaR, the response regulator component of the Lia system, to determine its role in GBS pathogenesis. LiaR is expressed as part of a three-gene operon () with a promoter located upstream of . A LiaR deletion mutant is more susceptible to cell wall-active antibiotics (vancomycin and bacitracin) as well as antimicrobial peptides (polymixin B, colistin, and nisin) compared to isogenic wild-type GBS. LiaR mutant GBS are significantly attenuated in mouse models of both GBS sepsis and pneumonia. Transcriptional profiling with DNA microarray and Northern blot demonstrated that LiaR regulates expression of genes involved in microbial defence against host antimicrobial systems including genes functioning in cell wall synthesis, pili formation and cell membrane modification. We conclude that the LiaFSR system, the first member of the IM-HK regulatory systems to be studied in GBS, is involved in sensing perturbations in the integrity of the cell wall and activates a transcriptional response that is important to the pathogenesis of GBS infection.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.064444-0
2013-07-01
2019-08-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/7/1521.html?itemId=/content/journal/micro/10.1099/mic.0.064444-0&mimeType=html&fmt=ahah

References

  1. Adderson E. E., Takahashi S., Wang Y., Armstrong J., Miller D. V., Bohnsack J. F.. ( 2003;). Subtractive hybridization identifies a novel predicted protein mediating epithelial cell invasion by virulent serotype III group B Streptococcus agalactiae. . Infect Immun 71:, 6857–6863. [CrossRef][PubMed]
    [Google Scholar]
  2. Al Safadi R., Mereghetti L., Salloum M., Lartigue M. F., Virlogeux-Payant I., Quentin R., Rosenau A.. ( 2011;). Two-component system RgfA/C activates the fbsB gene encoding major fibrinogen-binding protein in highly virulent CC17 clone group B Streptococcus. . PLoS ONE 6:, e14658. [CrossRef][PubMed]
    [Google Scholar]
  3. Aldridge P. D., Gray M. A., Hirst B. H., Khan C. M.. ( 2005;). Who’s talking to whom? Epithelial-bacterial pathogen interactions. . Mol Microbiol 55:, 655–663. [CrossRef][PubMed]
    [Google Scholar]
  4. Baker C. J., Kasper D. L.. ( 1976;). Correlation of maternal antibody deficiency with susceptibility to neonatal group B streptococcal infection. . N Engl J Med 294:, 753–756. [CrossRef][PubMed]
    [Google Scholar]
  5. Baker C. J., Kasper D. L.. ( 1977;). Immunological investigation of infants with septicemia or meningitis due to group B Streptococcus. . J Infect Dis 136: (Suppl), S98–S104. [CrossRef][PubMed]
    [Google Scholar]
  6. Belcheva A., Golemi-Kotra D.. ( 2008;). A close-up view of the VraSR two-component system. A mediator of Staphylococcus aureus response to cell wall damage. . J Biol Chem 283:, 12354–12364. [CrossRef][PubMed]
    [Google Scholar]
  7. Bergman P., Johansson L., Asp V., Plant L., Gudmundsson G. H., Jonsson A. B., Agerberth B.. ( 2005;). Neisseria gonorrhoeae downregulates expression of the human antimicrobial peptide LL-37. . Cell Microbiol 7:, 1009–1017. [CrossRef][PubMed]
    [Google Scholar]
  8. Bowser T. E., Bartlett V. J., Grier M. C., Verma A. K., Warchol T., Levy S. B., Alekshun M. N.. ( 2007;). Novel anti-infection agents: small-molecule inhibitors of bacterial transcription factors. . Bioorg Med Chem Lett 17:, 5652–5655. [CrossRef][PubMed]
    [Google Scholar]
  9. Breukink E., de Kruijff B.. ( 2006;). Lipid II as a target for antibiotics. . Nat Rev Drug Discov 5:, 321–332. [CrossRef][PubMed]
    [Google Scholar]
  10. Chaffin D. O., Rubens C. E.. ( 1998;). Blue/white screening of recombinant plasmids in Gram-positive bacteria by interruption of alkaline phosphatase gene (phoZ) expression. . Gene 219:, 91–99. [CrossRef][PubMed]
    [Google Scholar]
  11. Cieslewicz M. J., Kasper D. L., Wang Y., Wessels M. R.. ( 2001;). Functional analysis in type Ia group B Streptococcus of a cluster of genes involved in extracellular polysaccharide production by diverse species of streptococci. . J Biol Chem 276:, 139–146. [CrossRef][PubMed]
    [Google Scholar]
  12. Cumley N. J., Smith L. M., Anthony M., May R. C.. ( 2012;). The CovS/CovR acid response regulator is required for intracellular survival of group B Streptococcus in macrophages. . Infect Immun 80:, 1650–1661. [CrossRef][PubMed]
    [Google Scholar]
  13. Dunny G. M., Lee L. N., LeBlanc D. J.. ( 1991;). Improved electroporation and cloning vector system for gram-positive bacteria. . Appl Environ Microbiol 57:, 1194–1201.[PubMed]
    [Google Scholar]
  14. Edwards M. S., Baker C. J.. ( 2005;). Group B streptococcal infections in elderly adults. . Clin Infect Dis 41:, 839–847. [CrossRef][PubMed]
    [Google Scholar]
  15. Edwards M. S., Rench M. A., Palazzi D. L., Baker C. J.. ( 2005;). Group B streptococcal colonization and serotype-specific immunity in healthy elderly persons. . Clin Infect Dis 40:, 352–357. [CrossRef][PubMed]
    [Google Scholar]
  16. Eldholm V., Gutt B., Johnsborg O., Brückner R., Maurer P., Hakenbeck R., Mascher T., Håvarstein L. S.. ( 2010;). The pneumococcal cell envelope stress-sensing system LiaFSR is activated by murein hydrolases and lipid II-interacting antibiotics. . J Bacteriol 192:, 1761–1773. [CrossRef][PubMed]
    [Google Scholar]
  17. Filipe S. R., Pinho M. G., Tomasz A.. ( 2000;). Characterization of the murMN operon involved in the synthesis of branched peptidoglycan peptides in Streptococcus pneumoniae.. J Biol Chem 275:, 27768–27774.[PubMed]
    [Google Scholar]
  18. Gardete S., Wu S. W., Gill S., Tomasz A.. ( 2006;). Role of VraSR in antibiotic resistance and antibiotic-induced stress response in Staphylococcus aureus.. Antimicrob Agents Chemother 50:, 3424–3434. [CrossRef][PubMed]
    [Google Scholar]
  19. Giammarinaro P., Sicard M., Gasc A. M.. ( 1999;). Genetic and physiological studies of the CiaH-CiaR two-component signal-transducing system involved in cefotaxime resistance and competence of Streptococcus pneumoniae.. Microbiology 145:, 1859–1869. [CrossRef][PubMed]
    [Google Scholar]
  20. Haas W., Kaushal D., Sublett J., Obert C., Tuomanen E. I.. ( 2005;). Vancomycin stress response in a sensitive and a tolerant strain of Streptococcus pneumoniae.. J Bacteriol 187:, 8205–8210. [CrossRef][PubMed]
    [Google Scholar]
  21. Hamilton A., Popham D. L., Carl D. J., Lauth X., Nizet V., Jones A. L.. ( 2006;). Penicillin-binding protein 1a promotes resistance of group B streptococcus to antimicrobial peptides. . Infect Immun 74:, 6179–6187. [CrossRef][PubMed]
    [Google Scholar]
  22. Hava D. L., Camilli A.. ( 2002;). Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. . Mol Microbiol 45:, 1389–1406.[PubMed]
    [Google Scholar]
  23. Henneke P., Berner R.. ( 2006;). Interaction of neonatal phagocytes with group B streptococcus: recognition and response. . Infect Immun 74:, 3085–3095. [CrossRef][PubMed]
    [Google Scholar]
  24. Hung D. T., Shakhnovich E. A., Pierson E., Mekalanos J. J.. ( 2005;). Small-molecule inhibitor of Vibrio cholerae virulence and intestinal colonization. . Science 310:, 670–674. [CrossRef][PubMed]
    [Google Scholar]
  25. Jenssen H., Hamill P., Hancock R. E.. ( 2006;). Peptide antimicrobial agents. . Clin Microbiol Rev 19:, 491–511. [CrossRef][PubMed]
    [Google Scholar]
  26. Jiang S. M., Cieslewicz M. J., Kasper D. L., Wessels M. R.. ( 2005;). Regulation of virulence by a two-component system in group B streptococcus.. J Bacteriol 187:, 1105–1113. [CrossRef][PubMed]
    [Google Scholar]
  27. Jiang S. M., Ishmael N., Dunning Hotopp J., Puliti M., Tissi L., Kumar N., Cieslewicz M. J., Tettelin H., Wessels M. R.. ( 2008;). Variation in the group B Streptococcus CsrRS regulon and effects on pathogenicity. . J Bacteriol 190:, 1956–1965. [CrossRef][PubMed]
    [Google Scholar]
  28. Jiang S. M., Park S. E., Yadav P., Paoletti L. C., Wessels M. R.. ( 2012;). Regulation and function of pilus island 1 in group B streptococcus.. J Bacteriol 194:, 2479–2490. [CrossRef][PubMed]
    [Google Scholar]
  29. Jones A. L., Mertz R. H., Carl D. J., Rubens C. E.. ( 2007;). A streptococcal penicillin-binding protein is critical for resisting innate airway defenses in the neonatal lung.. J Immunol 179:, 3196–3202. [CrossRef][PubMed]
    [Google Scholar]
  30. Jordan S., Rietkötter E., Strauch M. A., Kalamorz F., Butcher B. G., Helmann J. D., Mascher T.. ( 2007;). LiaRS-dependent gene expression is embedded in transition state regulation in Bacillus subtilis.. Microbiology 153:, 2530–2540. [CrossRef][PubMed]
    [Google Scholar]
  31. Jordan S., Hutchings M. I., Mascher T.. ( 2008;). Cell envelope stress response in Gram-positive bacteria. . FEMS Microbiol Rev 32:, 107–146. [CrossRef][PubMed]
    [Google Scholar]
  32. Klinzing D. C., Madoff L. C., Puopolo K. M.. ( 2009;). Genomic analysis identifies a transcription-factor binding motif regulating expression of the alpha C protein in Group B Streptococcus. . Microb Pathog 46:, 315–320. [CrossRef][PubMed]
    [Google Scholar]
  33. Kuroda M., Kuroda H., Oshima T., Takeuchi F., Mori H., Hiramatsu K.. ( 2003;). Two-component system VraSR positively modulates the regulation of cell-wall biosynthesis pathway in Staphylococcus aureus.. Mol Microbiol 49:, 807–821. [CrossRef][PubMed]
    [Google Scholar]
  34. Lamy M. C., Zouine M., Fert J., Vergassola M., Couve E., Pellegrini E., Glaser P., Kunst F., Msadek T. et al. ( 2004;). CovS/CovR of group B streptococcus: a two-component global regulatory system involved in virulence. . Mol Microbiol 54:, 1250–1268. [CrossRef][PubMed]
    [Google Scholar]
  35. Lembo A., Gurney M. A., Burnside K., Banerjee A., de los Reyes M., Connelly J. E., Lin W. J., Jewell K. A., Vo A. et al. ( 2010;). Regulation of CovR expression in Group B Streptococcus impacts blood-brain barrier penetration. . Mol Microbiol 77:, 431–443. [CrossRef][PubMed]
    [Google Scholar]
  36. Liu G. Y., Nizet V.. ( 2004;). Extracellular virulence factors of group B Streptococci. . Front Biosci 9:, 1794–1802. [CrossRef][PubMed]
    [Google Scholar]
  37. Maisey H. C., Doran K. S., Nizet V.. ( 2008a;). Recent advances in understanding the molecular basis of group B Streptococcus virulence. . Expert Rev Mol Med 10:, e27. [CrossRef][PubMed]
    [Google Scholar]
  38. Maisey H. C., Quach D., Hensler M. E., Liu G. Y., Gallo R. L., Nizet V., Doran K. S.. ( 2008b;). A group B streptococcal pilus protein promotes phagocyte resistance and systemic virulence. . FASEB J 22:, 1715–1724. [CrossRef][PubMed]
    [Google Scholar]
  39. Mascher T.. ( 2006;). Intramembrane-sensing histidine kinases: a new family of cell envelope stress sensors in Firmicutes bacteria. . FEMS Microbiol Lett 264:, 133–144. [CrossRef][PubMed]
    [Google Scholar]
  40. Mascher T., Margulis N. G., Wang T., Ye R. W., Helmann J. D.. ( 2003;). Cell wall stress responses in Bacillus subtilis: the regulatory network of the bacitracin stimulon. . Mol Microbiol 50:, 1591–1604. [CrossRef][PubMed]
    [Google Scholar]
  41. Mascher T., Zimmer S. L., Smith T. A., Helmann J. D.. ( 2004;). Antibiotic-inducible promoter regulated by the cell envelope stress-sensing two-component system LiaRS of Bacillus subtilis.. Antimicrob Agents Chemother 48:, 2888–2896. [CrossRef][PubMed]
    [Google Scholar]
  42. Mascher T., Helmann J. D., Unden G.. ( 2006a;). Stimulus perception in bacterial signal-transducing histidine kinases. . Microbiol Mol Biol Rev 70:, 910–938. [CrossRef][PubMed]
    [Google Scholar]
  43. Mascher T., Heintz M., Zähner D., Merai M., Hakenbeck R.. ( 2006b;). The CiaRH system of Streptococcus pneumoniae prevents lysis during stress induced by treatment with cell wall inhibitors and by mutations in pbp2x involved in β-lactam resistance. . J Bacteriol 188:, 1959–1968. [CrossRef][PubMed]
    [Google Scholar]
  44. Moszer I., Glaser P., Danchin A.. ( 1995;). SubtiList: a relational database for the Bacillus subtilis genome. . Microbiology 141:, 261–268. [CrossRef][PubMed]
    [Google Scholar]
  45. Nakano S., Erwin K. N., Ralle M., Zuber P.. ( 2005;). Redox-sensitive transcriptional control by a thiol/disulphide switch in the global regulator, Spx. . Mol Microbiol 55:, 498–510. [CrossRef][PubMed]
    [Google Scholar]
  46. Nizet V.. ( 2006;). Antimicrobial peptide resistance mechanisms of human bacterial pathogens. . Curr Issues Mol Biol 8:, 11–26.[PubMed]
    [Google Scholar]
  47. Pamp S. J., Frees D., Engelmann S., Hecker M., Ingmer H.. ( 2006;). Spx is a global effector impacting stress tolerance and biofilm formation in Staphylococcus aureus.. J Bacteriol 188:, 4861–4870. [CrossRef][PubMed]
    [Google Scholar]
  48. Papasergi S., Brega S., Mistou M. Y., Firon A., Oxaran V., Dover R., Teti G., Shai Y., Trieu-Cuot P., Dramsi S.. ( 2011;). The GBS PI-2a pilus is required for virulence in mice neonates. . PLoS ONE 6:, e18747. [CrossRef][PubMed]
    [Google Scholar]
  49. Park S. E., Jiang S., Wessels M. R.. ( 2012;). CsrRS and environmental pH regulate group B streptococcus adherence to human epithelial cells and extracellular matrix. . Infect Immun 80:, 3975–3984. [CrossRef][PubMed]
    [Google Scholar]
  50. Perez-Casal J., Price J. A., Maguin E., Scott J. R.. ( 1993;). An M protein with a single C repeat prevents phagocytosis of Streptococcus pyogenes: use of a temperature-sensitive shuttle vector to deliver homologous sequences to the chromosome of S. pyogenes.. Mol Microbiol 8:, 809–819. [CrossRef][PubMed]
    [Google Scholar]
  51. Peschel A., Sahl H.-G.. ( 2006;). The co-evolution of host cationic antimicrobial peptides and microbial resistance. . Nat Rev Microbiol 4:, 529–536. [CrossRef][PubMed]
    [Google Scholar]
  52. Pezzicoli A., Santi I., Lauer P., Rosini R., Rinaudo D., Grandi G., Telford J. L., Soriani M.. ( 2008;). Pilus backbone contributes to group B Streptococcus paracellular translocation through epithelial cells. . J Infect Dis 198:, 890–898. [CrossRef][PubMed]
    [Google Scholar]
  53. Pietiäinen M., Gardemeister M., Mecklin M., Leskelä S., Sarvas M., Kontinen V. P.. ( 2005;). Cationic antimicrobial peptides elicit a complex stress response in Bacillus subtilis that involves ECF-type sigma factors and two-component signal transduction systems. . Microbiology 151:, 1577–1592. [CrossRef][PubMed]
    [Google Scholar]
  54. Poyart C., Pellegrini E., Marceau M., Baptista M., Jaubert F., Lamy M.-C., Trieu-Cuot P.. ( 2003;). Attenuated virulence of Streptococcus agalactiae deficient in D-alanyl-lipoteichoic acid is due to an increased susceptibility to defensins and phagocytic cells. . Mol Microbiol 49:, 1615–1625. [CrossRef][PubMed]
    [Google Scholar]
  55. Puopolo K. M., Hollingshead S. K., Carey V. J., Madoff L. C.. ( 2001;). Tandem repeat deletion in the alpha C protein of group B streptococcus is recA independent. . Infect Immun 69:, 5037–5045. [CrossRef][PubMed]
    [Google Scholar]
  56. Puopolo K. M., Baker C. J.. ( 2013;). Group B streptococcal infection in neonates and young infants. http://www.uptodate.com/contents/group-b-streptococcal-infection-in-neonates-and-young-infants.
  57. Rajagopal L., Vo A., Silvestroni A., Rubens C. E.. ( 2006;). Regulation of cytotoxin expression by converging eukaryotic-type and two-component signaling mechanisms in Streptococcus agalactiae.. Mol. Micro 62:, 941–957. [CrossRef][PubMed]
    [Google Scholar]
  58. Reed L. J., Muench H.. ( 1938;). A simple method of estimating fifty per cent endpoints. . Am J Hyg 27:, 493–497.
    [Google Scholar]
  59. Reinscheid D. J., Stösser C., Ehlert K., Jack R. W., Möller K., Eikmanns B. J., Chhatwal G. S.. ( 2002;). Influence of proteins Bsp and FemH on cell shape and peptidoglycan composition in group B streptococcus. . Microbiology 148:, 3245–3254.[PubMed]
    [Google Scholar]
  60. Rosch J. W., Mann B., Thornton J., Sublett J., Tuomanen E.. ( 2008;). Convergence of regulatory networks on the pilus locus of Streptococcus pneumoniae.. Infect Immun 76:, 3187–3196. [CrossRef][PubMed]
    [Google Scholar]
  61. Rubens C. E., Wessels M. R., Heggen L. M., Kasper D. L.. ( 1987;). Transposon mutagenesis of type III group B Streptococcus: correlation of capsule expression with virulence. . Proc Natl Acad Sci U S A 84:, 7208–7212. [CrossRef][PubMed]
    [Google Scholar]
  62. Saeed A. I., Sharov V., White J., Li J., Liang W., Bhagabati N., Braisted J., Klapa M., Currier T. et al. ( 2003;). TM4: a free, open-source system for microarray data management and analysis. . Biotechniques 34:, 374–378.[PubMed]
    [Google Scholar]
  63. Schauber J., Dorschner R. A., Yamasaki K., Brouha B., Gallo R. L.. ( 2006;). Control of the innate epithelial antimicrobial response is cell-type specific and dependent on relevant microenvironmental stimuli. . Immunology 118:, 509–519.[PubMed]
    [Google Scholar]
  64. Spellerberg B., Rozdzinski E., Martin S., Weber-Heynemann J., Lütticken R.. ( 2002;). rgf encodes a novel two-component signal transduction system of Streptococcus agalactiae. . Infect Immun 70:, 2434–2440. [CrossRef][PubMed]
    [Google Scholar]
  65. Suntharalingam P., Senadheera M. D., Mair R. W., Lévesque C. M., Cvitkovitch D. G.. ( 2009;). The LiaFSR system regulates the cell envelope stress response in Streptococcus mutans.. J Bacteriol 191:, 2973–2984. [CrossRef][PubMed]
    [Google Scholar]
  66. Waldor M. K.. ( 2006;). Disarming pathogens–a new approach for antibiotic development. . N Engl J Med 354:, 296–297. [CrossRef][PubMed]
    [Google Scholar]
  67. Weidenmaier C., Peschel A., Kempf V. A., Lucindo N., Yeaman M. R., Bayer A. S.. ( 2005;). DltABCD- and MprF-mediated cell envelope modifications of Staphylococcus aureus confer resistance to platelet microbicidal proteins and contribute to virulence in a rabbit endocarditis model. . Infect Immun 73:, 8033–8038. [CrossRef][PubMed]
    [Google Scholar]
  68. Yin S., Daum R. S., Boyle-Vavra S.. ( 2006;). VraSR two-component regulatory system and its role in induction of pbp2 and vraSR expression by cell wall antimicrobials in Staphylococcus aureus.. Antimicrob Agents Chemother 50:, 336–343. [CrossRef][PubMed]
    [Google Scholar]
  69. Zhang X., Bremer H.. ( 1995;). Control of the Escherichia coli rrnB P1 promoter strength by ppGpp. . J Biol Chem 270:, 11181–11189. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.064444-0
Loading
/content/journal/micro/10.1099/mic.0.064444-0
Loading

Data & Media loading...

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error