1887

Abstract

serotype 2 ( 2) is an important zoonotic pathogen. It causes heavy economic losses in the pig-farming industry and can be associated with severe infections in humans, e.g. streptococcal toxic shock syndrome. Understanding its pathogenesis is critical for prevention and control of diseases caused by 2. In this study, we show that deletion of a two-component system (TCS), 05SSU1660/1661 (orthologues of the Ihk/Irr TCS of ), in 2 strain 05ZYH33 results in notable attenuation of virulence, as exemplified by reduced adherence to mucosal epithelium cells, increased elimination by macrophages, reduced ability to survive in an acidic or oxidative-stressed environment, and lowered pathogenicity in mice. Further analysis of differential proteomics profiles by two-dimensional electrophoresis revealed that while many previously well-known virulence factors, such as suilysin, autolysin and muraminidase-released protein, were not expressed differentially, cell metabolism was downregulated in the Ihk/Irr deletion mutant. In addition, the oxidative-stress response gene for manganese-dependent superoxide dismutase (MnSOD) was also repressed significantly in the mutant. Collectively, our data suggest that the Ihk/Irr TCS contributes to the virulence of 2 strain 05ZYH33, mainly through alteration of the bacterial cell metabolism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.057448-0
2012-07-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/7/1852.html?itemId=/content/journal/micro/10.1099/mic.0.057448-0&mimeType=html&fmt=ahah

References

  1. Albers S. V., Elferink M. G., Charlebois R. L., Sensen C. W., Driessen A. J., Konings W. N.. ( 1999;). Glucose transport in the extremely thermoacidophilic Sulfolobus solfataricus involves a high-affinity membrane-integrated binding protein. J Bacteriol181:4285–4291[PubMed]
    [Google Scholar]
  2. Archibald R. M.. ( 1944;). Determination of citrulline and allantoin and demonstration of citrulline in blood plasma. J Biol Chem156:121–142
    [Google Scholar]
  3. Beier D., Gross R.. ( 2006;). Regulation of bacterial virulence by two-component systems. Curr Opin Microbiol9:143–152 [CrossRef][PubMed]
    [Google Scholar]
  4. Berry A. M., Lock R. A., Hansman D., Paton J. C.. ( 1989;). Contribution of autolysin to virulence of Streptococcus pneumoniae . Infect Immun57:2324–2330[PubMed]
    [Google Scholar]
  5. Casiano-Colón A., Marquis R. E.. ( 1988;). Role of the arginine deiminase system in protecting oral bacteria and an enzymatic basis for acid tolerance. Appl Environ Microbiol54:1318–1324[PubMed]
    [Google Scholar]
  6. Chen C., Tang J., Dong W., Wang C., Feng Y., Wang J., Zheng F., Pan X., Liu D.. & other authors ( 2007;). A glimpse of streptococcal toxic shock syndrome from comparative genomics of S. suis 2 Chinese isolates. PLoS ONE2:e315 [CrossRef][PubMed]
    [Google Scholar]
  7. Cieslewicz M. J., Kasper D. L., Wang Y., Wessels M. R.. ( 2001;). Functional analysis in type Ia group B Streptococcus of a cluster of genes involved in extracellular polysaccharide production by diverse species of streptococci. J Biol Chem276:139–146 [CrossRef][PubMed]
    [Google Scholar]
  8. Cumley N. J., Smith L. M., Anthony M., May R. C.. ( 2012;). The CovS/CovR acid response regulator is required for intracellular survival of group B streptococcus in macrophages. Infect Immun80:1650–1661 [CrossRef][PubMed]
    [Google Scholar]
  9. Cunin R., Glansdorff N., Piérard A., Stalon V.. ( 1986;). Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev50:314–352[PubMed]
    [Google Scholar]
  10. Curran T. M., Lieou J., Marquis R. E.. ( 1995;). Arginine deiminase system and acid adaptation of oral streptococci. Appl Environ Microbiol61:4494–4496[PubMed]
    [Google Scholar]
  11. Degnan B. A., Palmer J. M., Robson T., Jones C. E., Fischer M., Glanville M., Mellor G. D., Diamond A. G., Kehoe M. A., Goodacre J. A.. ( 1998;). Inhibition of human peripheral blood mononuclear cell proliferation by Streptococcus pyogenes cell extract is associated with arginine deiminase activity. Infect Immun66:3050–3058[PubMed]
    [Google Scholar]
  12. Domínguez-Punaro M. C., Segura M., Plante M. M., Lacouture S., Rivest S., Gottschalk M.. ( 2007;). Streptococcus suis serotype 2, an important swine and human pathogen, induces strong systemic and cerebral inflammatory responses in a mouse model of infection. J Immunol179:1842–1854[PubMed][CrossRef]
    [Google Scholar]
  13. Dunny G. M., Leonard B. A.. ( 1997;). Cell–cell communication in Gram-positive bacteria. Annu Rev Microbiol51:527–564 [CrossRef][PubMed]
    [Google Scholar]
  14. Elliott S. D., Tai J. Y.. ( 1978;). The type-specific polysaccharides of Streptococcus suis . J Exp Med148:1699–1704 [CrossRef][PubMed]
    [Google Scholar]
  15. Elsinghorst E. A.. ( 1994;). Measurement of invasion by gentamicin resistance. Methods Enzymol236:405–420 [CrossRef][PubMed]
    [Google Scholar]
  16. Federle M. J., McIver K. S., Scott J. R.. ( 1999;). A response regulator that represses transcription of several virulence operons in the group A streptococcus. J Bacteriol181:3649–3657[PubMed]
    [Google Scholar]
  17. Feng Y., Zhang H., Ma Y., Gao G. F.. ( 2010;). Uncovering newly emerging variants of Streptococcus suis, an important zoonotic agent. Trends Microbiol18:124–131 [CrossRef][PubMed]
    [Google Scholar]
  18. Franzon V. L., Arondel J., Sansonetti P. J.. ( 1990;). Contribution of superoxide dismutase and catalase activities to Shigella flexneri pathogenesis. Infect Immun58:529–535[PubMed]
    [Google Scholar]
  19. Giraud M. F., Naismith J. H.. ( 2000;). The rhamnose pathway. Curr Opin Struct Biol10:687–696 [CrossRef][PubMed]
    [Google Scholar]
  20. Gottschalk M., Segura M., Xu J.. ( 2007;). Streptococcus suis infections in humans: the Chinese experience and the situation in North America. Anim Health Res Rev8:29–45 [CrossRef][PubMed]
    [Google Scholar]
  21. Gruening P., Fulde M., Valentin-Weigand P., Goethe R.. ( 2006;). Structure, regulation, and putative function of the arginine deiminase system of Streptococcus suis . J Bacteriol188:361–369 [CrossRef][PubMed]
    [Google Scholar]
  22. Hancock L., Perego M.. ( 2002;). Two-component signal transduction in Enterococcus faecalis . J Bacteriol184:5819–5825 [CrossRef][PubMed]
    [Google Scholar]
  23. Hancock R. E., Scott M. G.. ( 2000;). The role of antimicrobial peptides in animal defenses. Proc Natl Acad Sci U S A97:8856–8861 [CrossRef][PubMed]
    [Google Scholar]
  24. Hill J. E., Gottschalk M., Brousseau R., Harel J., Hemmingsen S. M., Goh S. H.. ( 2005;). Biochemical analysis, cpn60 and 16S rDNA sequence data indicate that Streptococcus suis serotypes 32 and 34, isolated from pigs, are Streptococcus orisratti . Vet Microbiol107:63–69 [CrossRef][PubMed]
    [Google Scholar]
  25. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R.. ( 1989;). Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene77:51–59 [CrossRef][PubMed]
    [Google Scholar]
  26. Horton R. M.. ( 1993;). In vitro recombination and mutagenesis of DNA: SOEing together tailor-made genes. Methods Mol Biol15:251–261[PubMed]
    [Google Scholar]
  27. Jing H. B., Yuan J., Wang J., Yuan Y., Zhu L., Liu X. K., Zheng Y. L., Wei K. H., Zhang X. M.. & other authors ( 2008;). Proteome analysis of Streptococcus suis serotype 2. Proteomics8:333–349 [CrossRef][PubMed]
    [Google Scholar]
  28. Khorchid A., Ikura M.. ( 2006;). Bacterial histidine kinase as signal sensor and transducer. Int J Biochem Cell Biol38:307–312 [CrossRef][PubMed]
    [Google Scholar]
  29. Lalonde M., Segura M., Lacouture S., Gottschalk M.. ( 2000;). Interactions between Streptococcus suis serotype 2 and different epithelial cell lines. Microbiology146:1913–1921[PubMed]
    [Google Scholar]
  30. Lamy M. C., Zouine M., Fert J., Vergassola M., Couve E., Pellegrini E., Glaser P., Kunst F., Msadek T.. & other authors ( 2004;). CovS/CovR of group B streptococcus: a two-component global regulatory system involved in virulence. Mol Microbiol54:1250–1268 [CrossRef][PubMed]
    [Google Scholar]
  31. LaPenta D., Rubens C., Chi E., Cleary P. P.. ( 1994;). Group A streptococci efficiently invade human respiratory epithelial cells. Proc Natl Acad Sci U S A91:12115–12119 [CrossRef][PubMed]
    [Google Scholar]
  32. Li M., Wang C., Feng Y., Pan X., Cheng G., Wang J., Ge J., Zheng F., Cao M.. & other authors ( 2008;). SalK/SalR, a two-component signal transduction system, is essential for full virulence of highly invasive Streptococcus suis serotype 2. PLoS ONE3:e2080 [CrossRef][PubMed]
    [Google Scholar]
  33. Li J., Tan C., Zhou Y., Fu S., Hu L., Hu J., Chen H., Bei W.. ( 2011;). The two-component regulatory system CiaRH contributes to the virulence of Streptococcus suis 2. Vet Microbiol148:99–104 [CrossRef][PubMed]
    [Google Scholar]
  34. Lun S., Perez-Casal J., Connor W., Willson P. J.. ( 2003;). Role of suilysin in pathogenesis of Streptococcus suis capsular serotype 2. Microb Pathog34:27–37 [CrossRef][PubMed]
    [Google Scholar]
  35. Ma Y., Feng Y., Liu D., Gao G. F.. ( 2009;). Avian influenza virus, Streptococcus suis serotype 2, severe acute respiratory syndrome-coronavirus and beyond: molecular epidemiology, ecology and the situation in China. Philos Trans R Soc Lond B Biol Sci364:2725–2737 [CrossRef][PubMed]
    [Google Scholar]
  36. Macrina F. L., Evans R. P., Tobian J. A., Hartley D. L., Clewell D. B., Jones K. R.. ( 1983;). Novel shuttle plasmid vehicles for EscherichiaStreptococcus transgeneric cloning. Gene25:145–150 [CrossRef][PubMed]
    [Google Scholar]
  37. Magnuson R., Solomon J., Grossman A. D.. ( 1994;). Biochemical and genetic characterization of a competence pheromone from B. subtilis . Cell77:207–216 [CrossRef][PubMed]
    [Google Scholar]
  38. Mandanici F., Gómez-Gascón L., Garibaldi M., Olaya-Abril A., Luque I., Tarradas C., Mancuso G., Papasergi S., Bárcena J. A.. & other authors ( 2010;). A surface protein of Streptococcus suis serotype 2 identified by proteomics protects mice against infection. J Proteomics73:2365–2369 [CrossRef][PubMed]
    [Google Scholar]
  39. Munier-Lehmann H., Chenal-Francisque V., Ionescu M., Chrisova P., Foulon J., Carniel E., Bârzu O.. ( 2003;). Relationship between bacterial virulence and nucleotide metabolism: a mutation in the adenylate kinase gene renders Yersinia pestis avirulent. Biochem J373:515–522 [CrossRef][PubMed]
    [Google Scholar]
  40. Navarre W. W., Halsey T. A., Walthers D., Frye J., McClelland M., Potter J. L., Kenney L. J., Gunn J. S., Fang F. C., Libby S. J.. ( 2005;). Co-regulation of Salmonella enterica genes required for virulence and resistance to antimicrobial peptides by SlyA and PhoP/PhoQ. Mol Microbiol56:492–508 [CrossRef][PubMed]
    [Google Scholar]
  41. Nizet V., Kim K. S., Stins M., Jonas M., Chi E. Y., Nguyen D., Rubens C. E.. ( 1997;). Invasion of brain microvascular endothelial cells by group B streptococci. Infect Immun65:5074–5081[PubMed]
    [Google Scholar]
  42. Odenbreit S., Faller G., Haas R.. ( 2002;). Role of the AlpAB proteins and lipopolysaccharide in adhesion of Helicobacter pylori to human gastric tissue. Int J Med Microbiol292:247–256 [CrossRef][PubMed]
    [Google Scholar]
  43. Okwumabua O., Chinnapapakkagari S.. ( 2005;). Identification of the gene encoding a 38-kilodalton immunogenic and protective antigen of Streptococcus suis . Clin Diagn Lab Immunol12:484–490[PubMed]
    [Google Scholar]
  44. Pan X., Ge J., Li M., Wu B., Wang C., Wang J., Feng Y., Yin Z., Zheng F.. & other authors ( 2009;). The orphan response regulator CovR: a globally negative modulator of virulence in Streptococcus suis serotype 2. J Bacteriol191:2601–2612 [CrossRef][PubMed]
    [Google Scholar]
  45. Pesci E. C., Cottle D. L., Pickett C. L.. ( 1994;). Genetic, enzymatic, and pathogenic studies of the iron superoxide dismutase of Campylobacter jejuni . Infect Immun62:2687–2694[PubMed]
    [Google Scholar]
  46. Podbielski A., Leonard B. A.. ( 1998;). The group A streptococcal dipeptide permease (Dpp) is involved in the uptake of essential amino acids and affects the expression of cysteine protease. Mol Microbiol28:1323–1334 [CrossRef][PubMed]
    [Google Scholar]
  47. Qu H., Xin Y., Dong X., Ma Y.. ( 2007;). An rmlA gene encoding d-glucose-1-phosphate thymidylyltransferase is essential for mycobacterial growth. FEMS Microbiol Lett275:237–243 [CrossRef][PubMed]
    [Google Scholar]
  48. Quon K. C., Marczynski G. T., Shapiro L.. ( 1996;). Cell cycle control by an essential bacterial two-component signal transduction protein. Cell84:83–93 [CrossRef][PubMed]
    [Google Scholar]
  49. Sassetti C. M., Boyd D. H., Rubin E. J.. ( 2003;). Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol48:77–84 [CrossRef][PubMed]
    [Google Scholar]
  50. Scarlato V., Aricò B., Prugnola A., Rappuoli R.. ( 1991;). Sequential activation and environmental regulation of virulence genes in Bordetella pertussis . EMBO J10:3971–3975[PubMed]
    [Google Scholar]
  51. Smith H. E., Wisselink H. J., Vecht U., Gielkens A. L., Smits M. A.. ( 1995;). High-efficiency transformation and gene inactivation in Streptococcus suis type 2. Microbiology141:181–188 [CrossRef][PubMed]
    [Google Scholar]
  52. Staats J. J., Plattner B. L., Stewart G. C., Changappa M. M.. ( 1999;). Presence of the Streptococcus suis suilysin gene and expression of MRP and EF correlates with high virulence in Streptococcus suis type 2 isolates. Vet Microbiol70:201–211 [CrossRef][PubMed]
    [Google Scholar]
  53. Tang J., Wang C., Feng Y., Yang W., Song H., Chen Z., Yu H., Pan X., Zhou X.. & other authors ( 2006;). Streptococcal toxic shock syndrome caused by Streptococcus suis serotype 2. PLoS Med3:e151 [CrossRef][PubMed]
    [Google Scholar]
  54. Tenenbaum T., Bloier C., Adam R., Reinscheid D. J., Schroten H.. ( 2005;). Adherence to and invasion of human brain microvascular endothelial cells are promoted by fibrinogen-binding protein FbsA of Streptococcus agalactiae . Infect Immun73:4404–4409 [CrossRef][PubMed]
    [Google Scholar]
  55. Tramontana A. R., Graham M., Sinickas V., Bak N.. ( 2008;). An Australian case of Streptococcus suis toxic shock syndrome associated with occupational exposure to animal carcasses. Med J Aust188:538–539[PubMed]
    [Google Scholar]
  56. Tsolis R. M., Bäumler A. J., Heffron F.. ( 1995;). Role of Salmonella typhimurium Mn-superoxide dismutase (SodA) in protection against early killing by J774 macrophages. Infect Immun63:1739–1744[PubMed]
    [Google Scholar]
  57. Voyich J. M., Sturdevant D. E., Braughton K. R., Kobayashi S. D., Lei B., Virtaneva K., Dorward D. W., Musser J. M., DeLeo F. R.. ( 2003;). Genome-wide protective response used by group A streptococcus to evade destruction by human polymorphonuclear leukocytes. Proc Natl Acad Sci U S A100:1996–2001 [CrossRef][PubMed]
    [Google Scholar]
  58. Voyich J. M., Braughton K. R., Sturdevant D. E., Vuong C., Kobayashi S. D., Porcella S. F., Otto M., Musser J. M., DeLeo F. R.. ( 2004;). Engagement of the pathogen survival response used by group A streptococcus to avert destruction by innate host defense. J Immunol173:1194–1201[PubMed][CrossRef]
    [Google Scholar]
  59. Wang Q., Han H., Xue Y., Qian Z., Meng B., Peng F., Wang Z., Tong W., Zhou C.. & other authors ( 2009;). Exploring membrane and cytoplasm proteomic responses of Alkalimonas amylolytica N10 to different external pHs with combination strategy of de novo peptide sequencing. Proteomics9:1254–1273 [CrossRef][PubMed]
    [Google Scholar]
  60. Willett N. P., Morse G. E.. ( 1966;). Long-chain fatty acid inhibition of growth of Streptococcus agalactiae in a chemically defined medium. J Bacteriol91:2245–2250[PubMed]
    [Google Scholar]
  61. Winterhoff N., Goethe R., Gruening P., Rohde M., Kalisz H., Smith H. E., Valentin-Weigand P.. ( 2002;). Identification and characterization of two temperature-induced surface-associated proteins of Streptococcus suis with high homologies to members of the arginine deiminase system of Streptococcus pyogenes . J Bacteriol184:6768–6776 [CrossRef][PubMed]
    [Google Scholar]
  62. Wu T., Chang H., Tan C., Bei W., Chen H.. ( 2009;). The orphan response regulator RevSC21 controls the attachment of Streptococcus suis serotype-2 to human laryngeal epithelial cells and the expression of virulence genes. FEMS Microbiol Lett292:170–181 [CrossRef][PubMed]
    [Google Scholar]
  63. Yesilkaya H., Kadioglu A., Gingles N., Alexander J. E., Mitchell T. J., Andrew P. W.. ( 2000;). Role of manganese-containing superoxide dismutase in oxidative stress and virulence of Streptococcus pneumoniae . Infect Immun68:2819–2826 [CrossRef][PubMed]
    [Google Scholar]
  64. Zúñiga M., Pérez G., González-Candelas F.. ( 2002;). Evolution of arginine deiminase (ADI) pathway genes. Mol Phylogenet Evol25:429–444 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.057448-0
Loading
/content/journal/micro/10.1099/mic.0.057448-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error