1887

Abstract

sp. ATCC 39006 (S39006) is a Gram-negative bacterium that is virulent in plant (potato) and invertebrate animal () models. It produces two secondary metabolite antibiotics, a prodigiosin and a carbapenem, and the exoenzymes pectate lyase and cellulase. We showed previously that deletion of the RNA chaperone Hfq abolished antibiotic production and attenuated virulence in both animal and plant hosts. Hfq and dependent small RNAs (sRNAs) are known to regulate the post-transcriptional expression of , which encodes σ, the stationary phase sigma factor subunit of RNA polymerase. An S39006 deletion mutant showed decreased transcript levels of . Therefore, in this study we investigated whether the phenotypes regulated by Hfq were mediated through its control of . Whereas loss of Hfq abolished prodigiosin and carbapenem production and attenuated virulence in both and potato, characterization of an S39006 mutant showed unexpectedly elevated prodigiosin and carbapenem production. Furthermore, the mutant exhibited attenuated animal pathogenesis, but not plant pathogenesis. Additionally, a homologue of the Hfq-dependent sRNA, RprA, was identified and shown to regulate prodigiosin production in a manner consistent with its role in positively regulating translation of mRNA. Combined, these results demonstrate that Hfq regulation of secondary metabolism and plant pathogenesis is independent of RpoS and establishes RpoS and RprA as regulators of antibiotic production.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.055780-0
2012-03-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/3/648.html?itemId=/content/journal/micro/10.1099/mic.0.055780-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  2. Bainton N. J., Stead P., Chhabra S. R., Bycroft B. W., Salmond G. P., Stewart G. S., Williams P.. ( 1992;). N-(3-oxohexanoyl)-L-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora. Biochem J288:997–1004[PubMed]
    [Google Scholar]
  3. Battesti A., Majdalani N., Gottesman S.. ( 2011;). The RpoS-mediated general stress response in Escherichia coli. Annu Rev Microbiol65:189–213 [CrossRef][PubMed]
    [Google Scholar]
  4. Brown L., Elliott T.. ( 1996;). Efficient translation of the RpoS sigma factor in Salmonella typhimurium requires host factor I, an RNA-binding protein encoded by the hfq gene. J Bacteriol178:3763–3770[PubMed]
    [Google Scholar]
  5. Brown L., Elliott T.. ( 1997;). Mutations that increase expression of the rpoS gene and decrease its dependence on hfq function in Salmonella typhimurium. J Bacteriol179:656–662[PubMed]
    [Google Scholar]
  6. Bycroft B. W., Maslen C., Box S. J., Brown A. G., Tyler J. W.. ( 1987;). The isolation and characterisation of (3R,5R)-and (3S,5R)-carbapenam-3-carboxylic acid from Serratia and Erwinia species and their putative biosynthetic role. J Chem Soc Chem Commun211623–1625 [CrossRef]
    [Google Scholar]
  7. Coulthurst S. J., Kurz C. L., Salmond G. P. C.. ( 2004;). luxS mutants of Serratia defective in autoinducer-2-dependent ‘quorum sensing’ show strain-dependent impacts on virulence and production of carbapenem and prodigiosin. Microbiology150:1901–1910 [CrossRef][PubMed]
    [Google Scholar]
  8. Coulthurst S. J., Barnard A. M. L., Salmond G. P. C.. ( 2005;). Regulation and biosynthesis of carbapenem antibiotics in bacteria. Nat Rev Microbiol3:295–306 [CrossRef][PubMed]
    [Google Scholar]
  9. Coulthurst S. J., Lilley K. S., Salmond G. P.. ( 2006;). Genetic and proteomic analysis of the role of luxS in the enteric phytopathogen, Erwinia carotovora. Mol Plant Pathol7:31–45 [CrossRef][PubMed]
    [Google Scholar]
  10. Crow M. A.. ( 2001;). The genetic regulation of pigment and antibiotic biosynthesis in Serratia sp.
  11. Demarre G., Guérout A.-M., Matsumoto-Mashimo C., Rowe-Magnus D. A., Marlière P., Mazel D.. ( 2005;). A new family of mobilizable suicide plasmids based on broad host range R388 plasmid (IncW) and RP4 plasmid (IncPα) conjugative machineries and their cognate Escherichia coli host strains. Res Microbiol156:245–255 [CrossRef][PubMed]
    [Google Scholar]
  12. Dong T., Schellhorn H. E.. ( 2010;). Role of RpoS in virulence of pathogens. Infect Immun78:887–897 [CrossRef][PubMed]
    [Google Scholar]
  13. Dong T., Yu R., Schellhorn H.. ( 2011;). Antagonistic regulation of motility and transcriptome expression by RpoN and RpoS in Escherichia coli. Mol Microbiol79:375–386 [CrossRef][PubMed]
    [Google Scholar]
  14. Evans T. J., Crow M. A., Williamson N. R., Orme W., Thomson N. R., Komitopoulou E., Salmond G. P. C.. ( 2010;). Characterization of a broad-host-range flagellum-dependent phage that mediates high-efficiency generalized transduction in, and between, Serratia and Pantoea. Microbiology156:240–247 [CrossRef][PubMed]
    [Google Scholar]
  15. Fineran P. C., Everson L., Slater H., Salmond G. P. C.. ( 2005a;). A GntR family transcriptional regulator (PigT) controls gluconate-mediated repression and defines a new, independent pathway for regulation of the tripyrrole antibiotic, prodigiosin, in Serratia. Microbiology151:3833–3845 [CrossRef][PubMed]
    [Google Scholar]
  16. Fineran P. C., Slater H., Everson L., Hughes K., Salmond G. P. C.. ( 2005b;). Biosynthesis of tripyrrole and β-lactam secondary metabolites in Serratia: integration of quorum sensing with multiple new regulatory components in the control of prodigiosin and carbapenem antibiotic production. Mol Microbiol56:1495–1517 [CrossRef][PubMed]
    [Google Scholar]
  17. Fineran P. C., Williamson N. R., Lilley K. S., Salmond G. P. C.. ( 2007;). Virulence and prodigiosin antibiotic biosynthesis in Serratia are regulated pleiotropically by the GGDEF/EAL domain protein, PigX. J Bacteriol189:7653–7662 [CrossRef][PubMed]
    [Google Scholar]
  18. Gardner P. P., Daub J., Tate J. G., Nawrocki E. P., Kolbe D. L., Lindgreen S., Wilkinson A. C., Finn R. D., Griffiths-Jones S.. & other authors ( 2009;). Rfam: updates to the RNA families database. Nucleic Acids Res37:Database issueD136–D140 [CrossRef][PubMed]
    [Google Scholar]
  19. Giddens S. R., Tormo A., Mahanty H. K.. ( 2000;). Expression of the antifeeding gene anfA1 in Serratia entomophila requires RpoS. Appl Environ Microbiol66:1711–1714 [CrossRef][PubMed]
    [Google Scholar]
  20. Gristwood T., Fineran P. C., Everson L., Williamson N. R., Salmond G. P.. ( 2009;). The PhoBR two-component system regulates antibiotic biosynthesis in Serratia in response to phosphate. BMC Microbiol9:112 [CrossRef][PubMed]
    [Google Scholar]
  21. Hengge R.. ( 2008;). The two-component network and the general stress sigma factor RpoS (σS) in Escherichia coli. Adv Exp Med Biol631:40–53 [CrossRef][PubMed]
    [Google Scholar]
  22. Kurz C. L., Chauvet S., Andrès E., Aurouze M., Vallet I., Michel G. P., Uh M., Celli J., Filloux A.. & other authors ( 2003;). Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening. EMBO J22:1451–1460 [CrossRef][PubMed]
    [Google Scholar]
  23. Labrousse A., Chauvet S., Couillault C., Kurz C. L., Ewbank J. J.. ( 2000;). Caenorhabditis elegans is a model host for Salmonella typhimurium. Curr Biol10:1543–1545 [CrossRef][PubMed]
    [Google Scholar]
  24. Lange R., Hengge-Aronis R.. ( 1994;). The cellular concentration of the sigma S subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability. Genes Dev8:1600–1612 [CrossRef][PubMed]
    [Google Scholar]
  25. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A.. & other authors ( 2007;). clustal w and clustal x version 2.0. Bioinformatics23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  26. Majdalani N., Cunning C., Sledjeski D., Elliott T., Gottesman S.. ( 1998;). DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription. Proc Natl Acad Sci U S A95:12462–12467 [CrossRef][PubMed]
    [Google Scholar]
  27. Majdalani N., Hernandez D., Gottesman S.. ( 2002;). Regulation and mode of action of the second small RNA activator of RpoS translation, RprA. Mol Microbiol46:813–826 [CrossRef][PubMed]
    [Google Scholar]
  28. Majdalani N., Vanderpool C. K., Gottesman S.. ( 2005;). Bacterial small RNA regulators. Crit Rev Biochem Mol Biol40:93–113 [CrossRef][PubMed]
    [Google Scholar]
  29. McCullen C. A., Benhammou J. N., Majdalani N., Gottesman S.. ( 2010;). Mechanism of positive regulation by DsrA and RprA small noncoding RNAs: pairing increases translation and protects rpoS mRNA from degradation. J Bacteriol192:5559–5571 [CrossRef][PubMed]
    [Google Scholar]
  30. Miller J. H.. ( 1972;). Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Muffler A., Fischer D., Hengge-Aronis R.. ( 1996;). The RNA-binding protein HF-I, known as a host factor for phage Qβ RNA replication, is essential for rpoS translation in Escherichia coli. Genes Dev10:1143–1151 [CrossRef][PubMed]
    [Google Scholar]
  32. Mukherjee A., Cui Y., Ma W., Liu Y., Ishihama A., Eisenstark A., Chatterjee A. K.. ( 1998;). RpoS (sigma-S) controls expression of rsmA, a global regulator of secondary metabolites, harpin, and extracellular proteins in Erwinia carotovora. J Bacteriol180:3629–3634[PubMed]
    [Google Scholar]
  33. Ovadis M., Liu X., Gavriel S., Ismailov Z., Chet I., Chernin L.. ( 2004;). The global regulator genes from biocontrol strain Serratia plymuthica IC1270: cloning, sequencing, and functional studies. J Bacteriol186:4986–4993 [CrossRef][PubMed]
    [Google Scholar]
  34. Papenfort K., Said N., Welsink T., Lucchini S., Hinton J. C. D., Vogel J.. ( 2009;). Specific and pleiotropic patterns of mRNA regulation by ArcZ, a conserved, Hfq-dependent small RNA. Mol Microbiol74:139–158 [CrossRef][PubMed]
    [Google Scholar]
  35. Poulter S., Carlton T. M., Su X., Spring D. R., Salmond G. P. C.. ( 2010;). Engineering of new prodigiosin-based biosensors of Serratia for facile detection of short-chain N-acyl homoserine lactone quorum-sensing molecules. Environmental Microbiology Reports2:322–328 [CrossRef]
    [Google Scholar]
  36. Poulter S., Carlton T. M., Spring D. R., Salmond G. P. C.. ( 2011;). The Serratia LuxR family regulator CarR 39006 activates transcription independently of cognate quorum sensing signals. Mol Microbiol80:1120–1131 [CrossRef][PubMed]
    [Google Scholar]
  37. Pradel E., Zhang Y., Pujol N., Matsuyama T., Bargmann C. I., Ewbank J. J.. ( 2007;). Detection and avoidance of a natural product from the pathogenic bacterium Serratia marcescens by Caenorhabditis elegans. Proc Natl Acad Sci U S A104:2295–2300 [CrossRef][PubMed]
    [Google Scholar]
  38. Pujol N., Link E. M., Liu L. X., Kurz C. L., Alloing G., Tan M. W., Ray K. P., Solari R., Johnson C. D., Ewbank J. J.. ( 2001;). A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Curr Biol11:809–821 [CrossRef][PubMed]
    [Google Scholar]
  39. Ramsay J. P., Williamson N. R., Spring D. R., Salmond G. P. C.. ( 2011;). A quorum-sensing molecule acts as a morphogen controlling gas vesicle organelle biogenesis and adaptive flotation in an enterobacterium. Proc Natl Acad Sci U S A108:14932–14937 [CrossRef][PubMed]
    [Google Scholar]
  40. Rehmsmeier M., Steffen P., Hochsmann M., Giegerich R.. ( 2004;). Fast and effective prediction of microRNA/target duplexes. RNA10:1507–1517 [CrossRef][PubMed]
    [Google Scholar]
  41. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  42. Slater H., Crow M., Everson L., Salmond G. P. C.. ( 2003;). Phosphate availability regulates biosynthesis of two antibiotics, prodigiosin and carbapenem, in Serratia via both quorum-sensing-dependent and -independent pathways. Mol Microbiol47:303–320 [CrossRef][PubMed]
    [Google Scholar]
  43. Sonnleitner E., Hagens S., Rosenau F., Wilhelm S., Habel A., Jäger K.-E., Bläsi U.. ( 2003;). Reduced virulence of a hfq mutant of Pseudomonas aeruginosa O1. Microb Pathog35:217–228 [CrossRef][PubMed]
    [Google Scholar]
  44. Soper T., Mandin P., Majdalani N., Gottesman S., Woodson S. A.. ( 2010;). Positive regulation by small RNAs and the role of Hfq. Proc Natl Acad Sci U S A107:9602–9607 [CrossRef][PubMed]
    [Google Scholar]
  45. Takayanagi Y., Tanaka K., Takahashi H.. ( 1994;). Structure of the 5′ upstream region and the regulation of the rpoS gene of Escherichia coli. Mol Gen Genet243:525–531 [CrossRef][PubMed]
    [Google Scholar]
  46. Thomson N. R., Crow M. A., McGowan S. J., Cox A., Salmond G. P.. ( 2000;). Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control. Mol Microbiol36:539–556 [CrossRef][PubMed]
    [Google Scholar]
  47. Weber H., Polen T., Heuveling J., Wendisch V. F., Hengge R.. ( 2005;). Genome-wide analysis of the general stress response network in Escherichia coli: σ-dependent genes, promoters, and sigma factor selectivity. J Bacteriol187:1591–1603 [CrossRef][PubMed]
    [Google Scholar]
  48. Wilf N. M., Williamson N. R., Ramsay J. P., Poulter S., Bandyra K. J., Salmond G. P. C.. ( 2011;). The RNA chaperone, Hfq, controls two luxR-type regulators and plays a key role in pathogenesis and production of antibiotics in Serratia sp. ATCC 39006. Environ Microbiol13:2649–2666 [CrossRef][PubMed]
    [Google Scholar]
  49. Williamson N. R., Simonsen H. T., Ahmed R. A. A., Goldet G., Slater H., Woodley L., Leeper F. J., Salmond G. P. C.. ( 2005;). Biosynthesis of the red antibiotic, prodigiosin, in Serratia: identification of a novel 2-methyl-3-n-amyl-pyrrole (MAP) assembly pathway, definition of the terminal condensing enzyme, and implications for undecylprodigiosin biosynthesis in Streptomyces. Mol Microbiol56:971–989 [CrossRef][PubMed]
    [Google Scholar]
  50. Williamson N. R., Fineran P. C., Gristwood T., Chawrai S. R., Leeper F. J., Salmond G. P. C.. ( 2007;). Anticancer and immunosuppressive properties of bacterial prodiginines. Future Microbiol2:605–618 [CrossRef][PubMed]
    [Google Scholar]
  51. Williamson N. R., Fineran P. C., Ogawa W., Woodley L. R., Salmond G. P. C.. ( 2008;). Integrated regulation involving quorum sensing, a two-component system, a GGDEF/EAL domain protein and a post-transcriptional regulator controls swarming and RhlA-dependent surfactant biosynthesis in Serratia. Environ Microbiol10:1202–1217 [CrossRef][PubMed]
    [Google Scholar]
  52. Zuker M.. ( 2003;). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res31:3406–3415 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.055780-0
Loading
/content/journal/micro/10.1099/mic.0.055780-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error