1887

Abstract

Enterobacteria of the genus are opportunistic human pathogens associated with urinary tract and wound infections, as well as enteric diseases. The lipopolysaccharide (LPS) O antigen confers major antigenic variability upon the cell surface and is used for serotyping of Gram-negative bacteria. Recently, O antigen structures have been extensively studied, but no data on the location and organization of the O antigen gene cluster have been reported. In this study, the four genome sequences available were analysed, and the putative O antigen gene cluster was identified in the polymorphic locus between the and genes. This finding provided the necessary information for designing primers, and cloning and sequencing the O antigen gene clusters from five more strains. The gene functions predicted were in agreement with the known O antigen structures; furthermore, annotation of the genes involved in the three-step synthesis of GDP-colitose (, and ) was supported by cloning and biochemical characterization of the corresponding enzymes. In one strain ( O39), no polysaccharide product of the gene cluster in the locus was found, and hence genes for synthesis of the existing O antigen are located elsewhere in the genome. In addition to the putative O antigen synthesis genes, homologues of , , and (in three strains) , required for the surface expression of capsular polysaccharides, were found upstream of in all species except , suggesting that the LPS of these species may be attributed to the so-called K LPS (K). The data obtained open a way for development of a PCR-based typing method for identification of isolates.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.055210-0
2012-04-01
2020-10-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/4/1024.html?itemId=/content/journal/micro/10.1099/mic.0.055210-0&mimeType=html&fmt=ahah

References

  1. Alam J., Beyer N., Liu H.-W.. ( 2004;). Biosynthesis of colitose: expression, purification, and mechanistic characterization of GDP-4-keto-6-deoxy-d-mannose-3-dehydrase (ColD) and GDP-l-colitose synthase (ColC). Biochemistry43:16450–16460 [CrossRef][PubMed]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  3. Andrianopoulos K., Wang L., Reeves P. R.. ( 1998;). Identification of the fucose synthetase gene in the colanic acid gene cluster of Escherichia coli K-12. J Bacteriol180:998–1001[PubMed]
    [Google Scholar]
  4. Bastin D. A., Reeves P. R.. ( 1995;). Sequence and analysis of the O antigen gene (rfb) cluster of Escherichia coli O111. Gene164:17–23 [CrossRef][PubMed]
    [Google Scholar]
  5. Bateman A., Birney E., Cerruti L., Durbin R., Etwiller L., Eddy S. R., Griffiths-Jones S., Howe K. L., Marshall M., Sonnhammer E. L.. ( 2002;). The Pfam protein families database. Nucleic Acids Res30:276–280 [CrossRef][PubMed]
    [Google Scholar]
  6. Beyer N., Alam J., Hallis T. M., Guo Z., Liu H.-W.. ( 2003;). The biosynthesis of GDP-l-colitose: C-3 deoxygenation is catalyzed by a unique coenzyme B6-dependent enzyme. J Am Chem Soc125:5584–5585 [CrossRef][PubMed]
    [Google Scholar]
  7. Carlin N. I. A., Lindberg A. A., Bock K., Bundle D. R.. ( 1984;). The Shigella flexneri O-antigenic polysaccharide chain. Nature of the biological repeating unit. Eur J Biochem139:189–194 [CrossRef][PubMed]
    [Google Scholar]
  8. Collins R. F., Beis K., Dong C., Botting C. H., McDonnell C., Ford R. C., Clarke B. R., Whitfield C., Naismith J. H.. ( 2007;). The 3D structure of a periplasm-spanning platform required for assembly of group 1 capsular polysaccharides in Escherichia coli. Proc Natl Acad Sci U S A104:2390–2395 [CrossRef][PubMed]
    [Google Scholar]
  9. Cunneen M. M., Reeves P. R.. ( 2011;). Evolution of lipopolysaccharide biosynthesis genes. Bacterial Lipopolysaccharides: Structure, Chemical Synthesis, Biogenesis and Interaction with Host Cells339–370 Knirel Y. A., Valvano M. A.. Vienna: Springer; [CrossRef]
    [Google Scholar]
  10. Daniels C., Vindurampulle C., Morona R.. ( 1998;). Overexpression and topology of the Shigella flexneri O-antigen polymerase (Rfc/Wzy). Mol Microbiol28:1211–1222 [CrossRef][PubMed]
    [Google Scholar]
  11. Erbel P. J. A., Barr K., Gao N., Gerwig G. J., Rick P. D., Gardner K. H.. ( 2003;). Identification and biosynthesis of cyclic enterobacterial common antigen in Escherichia coli. J Bacteriol185:1995–2004 [CrossRef][PubMed]
    [Google Scholar]
  12. Ewing W. H.. ( 1986;). The tribe Proteae. Identification of Enterobacteriaceae454–459 Edward P. R.. New York: Elsevier;
    [Google Scholar]
  13. Ewing W. H., Tanner K. E., Dennard D. A.. ( 1954;). The Providence group: an intermediate group of enteric bacteria. J Infect Dis94:134–140 [CrossRef][PubMed]
    [Google Scholar]
  14. Gronow S., Brade H.. ( 2001;). Lipopolysaccharide biosynthesis: which steps do bacteria need to survive?. J Endotoxin Res7:3–23[PubMed]
    [Google Scholar]
  15. Islam S. T., Taylor V. L., Qi M., Lam J. S.. ( 2010;). Membrane topology mapping of the O-antigen flippase (Wzx), polymerase (Wzy), and ligase (WaaL) from Pseudomonas aeruginosa PAO1 reveals novel domain architectures. mBio1:e00189-00110–e00189-e00119 [CrossRef][PubMed]
    [Google Scholar]
  16. Islam S. T., Gold A. C., Taylor V. L., Anderson E. M., Ford R. C., Lam J. S.. ( 2011;). Dual conserved periplasmic loops possess essential charge characteristics that support a catch-and-release mechanism of O-antigen polymerization by Wzy in Pseudomonas aeruginosa PAO1. J Biol Chem286:20600–20605 [CrossRef][PubMed]
    [Google Scholar]
  17. Juneja P., Lazzaro B. P.. ( 2009;). Providencia sneebia sp. nov. and Providencia burhodogranariea sp. nov., isolated from wild Drosophila melanogaster. Int J Syst Evol Microbiol59:1108–1111 [CrossRef][PubMed]
    [Google Scholar]
  18. Katzenellenbogen E., Kocharova N. A., Zatonsky G. V., Shashkov A. S., Bogulska M., Knirel Y. A.. ( 2005;). Structures of the biological repeating units in the O-chain polysaccharides of Hafnia alvei strains having a typical lipopolysaccharide outer core region. FEMS Immunol Med Microbiol45:269–278 [CrossRef][PubMed]
    [Google Scholar]
  19. Knirel Y. A.. ( 2011;). Structure of O-antigens. Bacterial Lipopolysaccharides: Structure, Chemical Synthesis, Biogenesis and Interaction with Host Cells41–115 Knirel Y. A., Valvano M. A.. Vienna: Springer; [CrossRef]
    [Google Scholar]
  20. Knirel Y. A., Shevelev S. D., Perepelov A. V.. ( 2011;). Higher aldulosonic acids: components of bacterial glycans. Mendeleev Commun21:173–182 [CrossRef]
    [Google Scholar]
  21. Kocharova N. A., Maszewska A., Zatonsky G. V., Torzewska A., Bystrova O. V., Shashkov A. S., Knirel Y. A., Rozalski A.. ( 2004;). Structure of the O-polysaccharide of Providencia alcalifaciens O19. Carbohydr Res339:415–419 [CrossRef][PubMed]
    [Google Scholar]
  22. Kocharova N. A., Ovchinnikova O. G., Toukach F. V., Torzewska A., Shashkov A. S., Knirel Y. A., Rozalski A.. ( 2005;). The O-polysaccharide from the lipopolysaccharide of Providencia stuartii O44 contains l-quinovose, a 6-deoxy sugar rarely occurring in bacterial polysaccharides. Carbohydr Res340:1419–1423 [CrossRef][PubMed]
    [Google Scholar]
  23. Kocharova N. A., Ovchinnikova O. G., Torzewska A., Shashkov A. S., Knirel Y. A., Rozalski A.. ( 2007;). The structure of the O-polysaccharide from the lipopolysaccharide of Providencia alcalifaciens O36 containing 3-deoxy-d-manno-oct-2-ulosonic acid. Carbohydr Res342:665–670 [CrossRef][PubMed]
    [Google Scholar]
  24. Kocharova N. A., Kondakova A. N., Vinogradov E., Ovchinnikova O. G., Lindner B., Shashkov A. S., Rozalski A., Knirel Y. A.. ( 2008a;). Full structure of the carbohydrate chain of the lipopolysaccharide of Providencia rustigianii O34. Chemistry14:6184–6191 [CrossRef][PubMed]
    [Google Scholar]
  25. Kocharova N. A., Vinogradov E., Kondakova A. N., Shashkov A. S., Rozalski A., Knirel Y. A.. ( 2008b;). The full structure of the carbohydrate chain of the lipopolysaccharide of Providencia alcalifaciens O19. J Carbohydr Chem27:320–331 [CrossRef]
    [Google Scholar]
  26. Kondakova A. N., Vinogradov E., Lindner B., Kocharova N. A., Rozalski A., Knirel Y. A.. ( 2007;). Mass-spectrometric studies of Providencia SR-form lipopolysaccharides and elucidation of the biological repeating unit structure of Providencia rustigianii O14-polysaccharide. J Carbohydr Chem26:497–512 [CrossRef]
    [Google Scholar]
  27. Köplin R., Wang G., Hötte B., Priefer U. B., Pühler A.. ( 1993;). A 3.9-kb DNA region of Xanthomonas campestris pv. campestris that is necessary for lipopolysaccharide production encodes a set of enzymes involved in the synthesis of dTDP-rhamnose. J Bacteriol175:7786–7792[PubMed]
    [Google Scholar]
  28. Koreishi A. F., Schechter B. A., Karp C. L.. ( 2006;). Ocular infections caused by Providencia rettgeri. Ophthalmology113:1463–1466 [CrossRef][PubMed]
    [Google Scholar]
  29. Marchler-Bauer A., Bryant S. H.. ( 2004;). CD-Search: protein domain annotations on the fly. Nucleic Acids Res32:Web Server issueW327–W331 [CrossRef][PubMed]
    [Google Scholar]
  30. McNally D. J., Schoenhofen I. C., Mulrooney E. F., Whitfield D. M., Vinogradov E., Lam J. S., Logan S. M., Brisson J.-R.. ( 2006;). Identification of labile UDP-ketosugars in Helicobacter pylori, Campylobacter jejuni and Pseudomonas aeruginosa: key metabolites used to make glycan virulence factors. ChemBioChem7:1865–1868 [CrossRef][PubMed]
    [Google Scholar]
  31. Mullane N., O’Gaora P., Nally J. E., Iversen C., Whyte P., Wall P. G., Fanning S.. ( 2008;). Molecular analysis of the Enterobacter sakazakii O-antigen gene locus. Appl Environ Microbiol74:3783–3794 [CrossRef][PubMed]
    [Google Scholar]
  32. Murata T., Iida T., Shiomi Y., Tagomori K., Akeda Y., Yanagihara I., Mushiake S., Ishiguro F., Honda T.. ( 2001;). A large outbreak of foodborne infection attributed to Providencia alcalifaciens. J Infect Dis184:1050–1055 [CrossRef][PubMed]
    [Google Scholar]
  33. Nakano Y., Suzuki N., Yoshida Y., Nezu T., Yamashita Y., Koga T.. ( 2000;). Thymidine diphosphate-6-deoxy-l-lyxo-4-hexulose reductase synthesizing dTDP-6-deoxy-l-talose from Actinobacillus actinomycetemcomitans. J Biol Chem275:6806–6812 [CrossRef][PubMed]
    [Google Scholar]
  34. O’Hara C. M., Brenner F. W., Miller J. M.. ( 2000;). Classification, identification, and clinical significance of Proteus, Providencia, and Morganella. Clin Microbiol Rev13:534–546 [CrossRef][PubMed]
    [Google Scholar]
  35. Ovchinnikova O. G., Kocharova N. A., Bakinovskiy L. V., Torzewska A., Shashkov A. S., Knirel Y. A., Rozalski A.. ( 2004;). The structure of the O-polysaccharide from the lipopolysaccharide of Providencia stuartii O47. Carbohydr Res339:2621–2626 [CrossRef][PubMed]
    [Google Scholar]
  36. Ovchinnikova O. G., Kocharova N. A., Wykrota M., Shashkov A. S., Knirel Y. A., Rozalski A.. ( 2007;). Structure of a colitose-containing O-polysaccharide from the lipopolysaccharide of Providencia alcalifaciens O6. Carbohydr Res342:2144–2148 [CrossRef][PubMed]
    [Google Scholar]
  37. Ovchinnikova O. G., Kocharova N. A., Kondakova A. N., Bialczak-Kokot M., Shashkov A. S., Knirel Y. A., Rozalski A.. ( 2011a;). Structure of the O-polysaccharide from the lipopolysaccharide of Providencia alcalifaciens O28. Carbohydr Res346:2638–2641 [CrossRef][PubMed]
    [Google Scholar]
  38. Ovchinnikova O. G., Kocharova N. A., Shashkov A. S., Arbatsky N. P., Rozalski A., Knirel Y. A.. ( 2011b;). Elucidation of the full O-polysaccharide structure and identification of the core type of the lipopolysaccharide of Providencia alcalifaciens O9. Carbohydr Res346:644–650 [CrossRef][PubMed]
    [Google Scholar]
  39. Pacinelli E., Wang L., Reeves P. R.. ( 2002;). Relationship of Yersinia pseudotuberculosis O antigens IA, IIA, and IVB: the IIA gene cluster was derived from that of IVB. Infect Immun70:3271–3276 [CrossRef][PubMed]
    [Google Scholar]
  40. Pfoestl A., Hofinger A., Kosma P., Messner P.. ( 2003;). Biosynthesis of dTDP-3-acetamido-3,6-dideoxy-α-d-galactose in Aneurinibacillus thermoaerophilus L420-91T. J Biol Chem278:26410–26417 [CrossRef][PubMed]
    [Google Scholar]
  41. Raetz C. R., Whitfield C.. ( 2002;). Lipopolysaccharide endotoxins. Annu Rev Biochem71:635–700 [CrossRef][PubMed]
    [Google Scholar]
  42. Rahav G., Pinco E., Silbaq F., Bercovier H.. ( 1994;). Molecular epidemiology of catheter-associated bacteriuria in nursing home patients. J Clin Microbiol32:1031–1034[PubMed]
    [Google Scholar]
  43. Rahn A., Beis K., Naismith J. H., Whitfield C.. ( 2003;). A novel outer membrane protein, Wzi, is involved in surface assembly of the Escherichia coli K30 group 1 capsule. J Bacteriol185:5882–5890 [CrossRef][PubMed]
    [Google Scholar]
  44. Ramm M., Wolfender J.-L., Queiroz E. F., Hostettmann K., Hamburger M.. ( 2004;). Rapid analysis of nucleotide-activated sugars by high-performance liquid chromatography coupled with diode-array detection, electrospray ionization mass spectrometry and nuclear magnetic resonance. J Chromatogr A1034:139–148 [CrossRef][PubMed]
    [Google Scholar]
  45. Raymond C. K., Sims E. H., Kas A., Spencer D. H., Kutyavin T. V., Ivey R. G., Zhou Y., Kaul R., Clendenning J. B., Olson M. V.. ( 2002;). Genetic variation at the O-antigen biosynthetic locus in Pseudomonas aeruginosa. J Bacteriol184:3614–3622 [CrossRef][PubMed]
    [Google Scholar]
  46. Reeves P. R.. ( 1994;). Biosynthesis and assembly of lipopolysaccharide. Bacterial Cell Wall: New Comprehensive Biochemistryvol. 27281–317 Neuberger A., van Deenen L. L. M.. New York: Elsevier; [CrossRef]
    [Google Scholar]
  47. Reeves P. P., Wang L.. ( 2002;). Genomic organization of LPS-specific loci. Curr Top Microbiol Immunol264:109–135 [CrossRef][PubMed]
    [Google Scholar]
  48. Ren Y., Perepelov A. V., Wang H., Zhang H., Knirel Y. A., Wang L., Chen W.. ( 2010;). Biochemical characterization of GDP-l-fucose de novo synthesis pathway in fungus Mortierella alpina. Biochem Biophys Res Commun391:1663–1669 [CrossRef][PubMed]
    [Google Scholar]
  49. Rutherford K., Parkhill J., Crook J., Horsnell T., Rice P., Rajandream M. A., Barrell B.. ( 2000;). Artemis: sequence visualization and annotation. Bioinformatics16:944–945 [CrossRef][PubMed]
    [Google Scholar]
  50. Samuel G., Reeves P. R.. ( 2003;). Biosynthesis of O-antigens: genes and pathways involved in nucleotide sugar precursor synthesis and O-antigen assembly. Carbohydr Res338:2503–2519 [CrossRef][PubMed]
    [Google Scholar]
  51. Schnaitman C. A., Klena J. D.. ( 1993;). Genetics of lipopolysaccharide biosynthesis in enteric bacteria. Microbiol Rev57:655–682[PubMed]
    [Google Scholar]
  52. Shashkov A. S., Arbatsky N. P., Knirel Y. A.. ( 2011;). Structures and genetics of Kdo-containing O-antigens of Cronobacter sakazakii G2706 and G2704, the reference strains of serotypes O5 and O6. Carbohydr Res346:1924–1929 [CrossRef][PubMed]
    [Google Scholar]
  53. Somvanshi V. S., Lang E., Sträubler B., Spröer C., Schumann P., Ganguly S., Saxena A. K., Stackebrandt E.. ( 2006;). Providencia vermicola sp. nov., isolated from infective juveniles of the entomopathogenic nematode Steinernema thermophilum. Int J Syst Evol Microbiol56:629–633 [CrossRef][PubMed]
    [Google Scholar]
  54. Sozhamannan S., Deng Y. K., Li M., Sulakvelidze A., Kaper J. B., Johnson J. A., Nair G. B., Morris J. G. Jr. ( 1999;). Cloning and sequencing of the genes downstream of the wbf gene cluster of Vibrio cholerae serogroup O139 and analysis of the junction genes in other serogroups. Infect Immun67:5033–5040[PubMed]
    [Google Scholar]
  55. Staden R.. ( 1996;). The Staden sequence analysis package. Mol Biotechnol5:233–241 [CrossRef][PubMed]
    [Google Scholar]
  56. Stenutz R., Weintraub A., Widmalm G.. ( 2006;). The structures of Escherichia coli O-polysaccharide antigens. FEMS Microbiol Rev30:382–403 [CrossRef][PubMed]
    [Google Scholar]
  57. Tumbarello M., Citton R., Spanu T., Sanguinetti M., Romano L., Fadda G., Cauda R.. ( 2004;). ESBL-producing multidrug-resistant Providencia stuartii infections in a university hospital. J Antimicrob Chemother53:277–282 [CrossRef][PubMed]
    [Google Scholar]
  58. Valvano M. A.. ( 2003;). Export of O-specific lipopolysaccharide. Front Biosci8:s452–s471 [CrossRef][PubMed]
    [Google Scholar]
  59. Valvano M. A., Furlong S. E., Patel K. B.. ( 2011;). Genetics, biosynthesis and assembly of O-antigen. Bacterial Lipopolysaccharides: Structure, Chemical Synthesis, Biogenesis and Interaction with Host Cells275–310 Knirel Y. A., Valvano M. A.. Vienna: Springer; [CrossRef]
    [Google Scholar]
  60. Vimr E. R., Steenbergen S. M.. ( 2009;). Early molecular-recognition events in the synthesis and export of group 2 capsular polysaccharides. Microbiology155:9–15 [CrossRef][PubMed]
    [Google Scholar]
  61. Wang Q., Torzewska A., Ruan X., Wang X., Rozalski A., Shao Z., Guo X., Zhou H., Feng L., Wang L.. ( 2010;). Molecular and genetic analyses of the putative Proteus O antigen gene locus. Appl Environ Microbiol76:5471–5478 [CrossRef][PubMed]
    [Google Scholar]
  62. Whitfield C.. ( 2006;). Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem75:39–68 [CrossRef][PubMed]
    [Google Scholar]
  63. Wu B., Zhang Y., Wang P. G.. ( 2001;). Identification and characterization of GDP-d-mannose 4,6-dehydratase and GDP-l-fucose synthetase in a GDP-l-fucose biosynthetic gene cluster from Helicobacter pylori. Biochem Biophys Res Commun285:364–371 [CrossRef][PubMed]
    [Google Scholar]
  64. Yoh M., Matsuyama J., Ohnishi M., Takagi K., Miyagi H., Mori K., Park K.-S., Ono T., Honda T.. ( 2005;). Importance of Providencia species as a major cause of travellers’ diarrhoea. J Med Microbiol54:1077–1082 [CrossRef][PubMed]
    [Google Scholar]
  65. Zhang L., Toivanen P., Skurnik M.. ( 1996;). The gene cluster directing O-antigen biosynthesis in Yersinia enterocolitica serotype O : 8: identification of the genes for mannose and galactose biosynthesis and the gene for the O-antigen polymerase. Microbiology142:277–288 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.055210-0
Loading
/content/journal/micro/10.1099/mic.0.055210-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error